• 제목/요약/키워드: Binary Mixtures

검색결과 336건 처리시간 0.03초

Fouling Study with Binary Protein Mixtures in Microfilration (이성분계 단백질 혼합물의 미세막 분리공정에서 막오염에 관한 연구)

  • Ahn, Byung Hun;Moon, Dong Ju;Yoo, Kye Sang;Ho, Chia Chi
    • Korean Chemical Engineering Research
    • /
    • 제43권2호
    • /
    • pp.236-242
    • /
    • 2005
  • Membrane fouling by protein mixtures during microfiltration has been investigated for binary mixtures of bovine serum albumin (BSA), casein, lysozyme, pepsin, and ovalbumin. Filtration experiments were carried out using $0.2{\mu}m$ polycarbonate track-etched (PCTE) membrane in a stirred cell under constant transmembrane pressure (14 kPa) and concentration of hydrogen ion (pH=11) to study the effect of mixture composition on filtrate flux decline. Flux decline data were analyzed using a pore blockage-cake formation model developed recently. It was found that the model is in a good agreement with the experimental data. Fouling parameters such as the rate of pore blockage(${\alpha}$), the initial resistance of the protein deposit ($R_{po}$) and the increasing rate of the protein layer resistance(${\beta}$) were used to evaluate the rate of filtrate flow by membrane fouling in the binary mixture system. Generally, the trend of ${\alpha}$ is comparable with that of filtrate flux decline. It was also found that fast flux decreasing was observed over the binary mixture containing casein. The result is due to high value of the initial resistance of the protein deposit ($R_{po}$) over casein.

Combined Effect of Afidopyropen, Chlorfenapyr and Cyantraniliprole to Insecticide-resistant Cotton Aphid, Aphis gossypii (Hemiptera: Aphididae) (살충제 저항성 목화진딧물에 대한 afidopyropen과 chlorfenapyr, cyantraniliprole의 혼합효과 평가)

  • Dong-Hyun Kang;Yuno Lee;Ha Hyeon Moon;Se Eun Kim;Hyun-Na Koo;Hyun Kyung Kim;Gil-Hah Kim
    • Korean journal of applied entomology
    • /
    • 제63권1호
    • /
    • pp.53-61
    • /
    • 2024
  • The susceptibility of Aphis gossypii populations collected from three fields (WJ, CC, and GS) was evaluated to three insecticides (afidopyropen, chlorfenapyr and cyantraniliprole) and three binary mixtures. Three field populations showed resistance ratios of over 100 to all insecticides. The Combination Index (CI), %M(synergism), Co-Toxicity Coefficient (CTC), Wadley Ratio (WR), Synergism Ratio (SR) and Abbott Ratio (AR) were used to evaluate combined effect of the insecticides. Afidopyropen + chlorfenapyr (CI ≤ 0.16; %M(synergism) ≥ 94; CTC ≥ 764.5; WR ≥ 6.4; SR ≥ 6.9 and AR ≥ 1.1) showed a synergism in all filed populations. WJ and CC populations showed a synergism in all binary mixtures of insecticides, but GS population showed an antagonism for chlorfenapyr + cyantraniliprole (CI, 1.63; %M(synergism), 30; CTC, 64.0; WR, 0.6 and AR, 0.54) and afidopyropen + cyantraniliprole (CI, 6.7; %M(synergism), 1; CTC, 19.8; WR, 0.2 and AR ≤ 0.55). All mixtures (afidopyropen + chlorfenapyr, chlorfenapyr + cyantraniliprole and afidopyropen + cyantraniliprole) showed a control value of over 99% after 21 days of treatment in the field. This study highlights that binary mixtures of three insecticides serve as an effective control strategy for A. gossypii.

A Model for Correlation of Various Solvatochromic Parameters with Composition in Aqueous and Organic Binary Solvent Systems

  • Aziz, Habibi-Yangjeh
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권8호
    • /
    • pp.1165-1170
    • /
    • 2004
  • The applicability of the combined nearly ideal binary solvent/Redlich-Kister (CNIBS/R-K) equation for correlation of various solvatochromic parameters (SP) with composition is shown employing 84 experimental data sets for aqueous and organic binary solvent systems at temperatures ranging 15 to $75^{\circ}C$. The model provides a simple computational model to correlate/predict different SP values in various binary solvent systems. In proposed equations, $MPD_s$ (mean percentage deviations) are between 0.0500% and 6.9591% in mixtures of dimethyl sulfoxide with 2-methylpropan-2-ol and benzene with 2-methylpropan-2-ol, respectively. Correlation of the calculated and experimental values of various SP give an equation with an overall mean percentage deviation (OMPD) of 1.1900, $R^2$ = 0.99692, s.e = 0.01223 and F = 341925.51. Approximately 70% of the calculated SP values have IPD (individual percentage deviation) lower than one and it is possible to predict unmeasured SP values by using only eight experimental data.

Nucleate Boiling Heat Transfer Coefficients of Mixtures Containing Propane, Isobutane and HFC134a

  • Park Ki-Jung;Jung Dong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.399-408
    • /
    • 2006
  • Nucleate pool boiling heat transfer coefficient (HTCs) were measured with one nonazeotropic mixture of propane/isobutane and two azeotropic mixtures of HFC134a/isobutane and propane/HFC 134a. All data were taken at the liquid pool temperature of $7^{\circ}C$ on a horizontal plain tube of 19.0mm outside diameter with heat fluxes of $10\;kW/m^2\;to\;80kW/m^2$ with an interval of $10\;kW/m^2$ in the decreasing order of heat flux. The measurements were made through electrical heating by a cartridge heater. The nonazeotropic mixture of propane/isobutane showed a reduction of HTCs as much as 41% from the ideal values. The azeotropic mixtures of HFC134a/isobutane and propane/HFC134a showed a reduction of HTCs as much as 44% from the ideal values at compositions other than azeotropic compositions. At azeotropic compositions, however, the HTCs were even higher than the ideal values due to the increase in the vapor pressure. For all mixtures, the reduction in heat transfer was greater with larger gliding temperature difference. Stephan and Korner's and lung et al's correlations predicted the HTCs of mixtures with a mean deviation of 11%. The largest mean deviation occurred at the azeotropic compositions of HFC134a/isobutane and propane/HFC134a.

Surface Properties and Betergency of the Binary Surfactant Mixture (계면활성제 혼합용액의 계면특성 및 세척성에 관한 연구)

  • 심소희;박정희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • 제21권3호
    • /
    • pp.632-640
    • /
    • 1997
  • Changes in surface properties and detergency of sunactant mixtures were investigated in order to study the optimum mixing ratio of anionic and nonionic surfactants by measuring surface tension, interfacial tension, suspendability, and emulsification as a Amction of mixing ratio. Also, surface tension and detergency of the surfactant mixtures were determined with the increase of water-hardness or temperature. The results were as follows: the addition of NPE to anionic surfactant solutions (LAS or SDS) by 0.1 mole fraction remarkably decreased surface tension. NPE (n=15)/anionic surfactant mixtures showed a synergistic effect in lowering interfacial tension and emulsification, but NPE (n=7.5)/anionic surfactant mixtures did not. In suspension stability, however, synergism appeared when LAS or 505 was mixed with both of NPE's. With respect to the hydrophile of NPE, NPE (n=15) was more effective than NPE (n=i.5) in improving suspension stability. Detergency of LAS/NPE mixture changed almost linearly with mixing ratio, but that of SDS/NPE mixture increased remarkably by the addition of 0.1 or 0.2 mole fraction of NPE at all temperatures. As the temperature increased, surface tension of surfactant mixtures decreased and detergency was improved, but their synergistic effect decreased. In hard water, the mixtures showed better detergency than single surfactuant solutions.

  • PDF

Measurement of flash point for binary mixtures of Ethanol, 1-propanol, 2-propanol and 2,2,4-trimethylpentane (Ethanol, 1-propanol, 2-propanol 그리고 2,2,4-trimethylpentane 이성분 혼합계에 대한 인화점 측정)

  • Hwang, In Chan;In, Se Jin
    • Clean Technology
    • /
    • 제25권2호
    • /
    • pp.140-146
    • /
    • 2019
  • Flammable substances, such as organic solvents, are commonly used in laboratories and industrial processes. The flash point of flammable liquid mixtures is a very important parameter for characterizing the ignition and explosion hazards, and the flash points of mixtures of $C_2{\sim}C_3$ alcohols and 2,2,4-trimethylpentane were measured in the present study. The 2,2,4-trimethylpentane is an important component of gasoline and is frequently used in the petroleum industry as a solvent. Lower flash point data were measured for the binary systems {ethanol + 2,2,4-trimethylpentane}, {1-propanol + 2,2,4-trimethylpentane}, and {2-propanol + 2,2,4-trimethylpentane}. The flash point measurements were carried out according to the standard test method (ASTM D3278) using a Stanhope-Seta closed cup flash point tester. The measured flash points were compared with the predicted values calculated using Raoult's law and also following $G^E$ models: Wilson, Non-Random Two Liquid (NRTL) and UNIversal QUAsiChemical (UNIQUAC). These models were able to predict the experimental flash points for different compositions of {$C_2{\sim}C_3$ alcohols + 2,2,4-trimethylpentane} mixtures with minimal deviations. The average absolute deviation between the predicted and measured lower flash point was less than 1.28 K. A minimum flash point behaviour was observed in all of the systems as in the many observed cases for the hydrocarbon and alcohol mixtures.

Pure and Binary Mixture Gases Adsorption Equilibria of Hydrogen/Methane/Ethylene on Activated Carbon (활성탄에서의 H2/CH4/C2H4 순수 기체와 이성분 혼합기체의 흡착평형)

  • Jeong, Byung-Man;Kang, Seok-Hyun;Choi, Hyun-Woo;Lee, Chang-Ha;Lee, Byung-Kwon;Choi, Dae-Ki
    • Korean Chemical Engineering Research
    • /
    • 제43권3호
    • /
    • pp.371-379
    • /
    • 2005
  • Adsorption equilibria of the gases $H_2$, $CH_4$, and $C_2H_4$ and their binary mixtures on activated carbon (Calgon co.) have been measured by static volumetric method in the pressure range of 0 to 18 atm at temperatures of 293.15, 303.15, and 313.15 K. From the parameters obtained from single component adsorption isotherm, multi-component adsorption equilibria could be predicted and compared with experimental data. The binary experimental data were applied to four models : extended Langmuir, extended Langmuir-Freundlich, Ideal Adsorbed Solution theory (IAST), and Vacancy Solution Model (VSM). The models were found to describe the experimental data with a reasonable accuracy. Extended L-F model predicts equilibria of mixture better than any other model.

Correlation Between Bulk and Surface Resistivity of Concrete

  • Ghosh, Pratanu;Tran, Quang
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권1호
    • /
    • pp.119-132
    • /
    • 2015
  • Electrical resistivity is an important physical property of portland cement concrete which is directly related to chloride induced corrosion process. This study examined the electrical surface resistivity (SR) and bulk electrical resistivity (BR) of concrete cylinders for various binary and ternary based high-performance concrete (HPC) mixtures from 7 to 161 days. Two different types of instruments were utilized for this investigation and they were 4 point Wenner probe meter for SR and Merlin conductivity tester for bulk resistivity measurements. Chronological development of electrical resistivity as well as correlation between two types of resistivity on several days was established for all concrete mixtures. The ratio of experimental surface resistance to bulk resistance and corresponding resistivity was computed and compared with theoretical values. Results depicted that bulk and SR are well correlated for different groups of HPC mixtures and these mixtures have attained higher range of electrical resistivity for both types of measurements. In addition, this study presents distribution of surface and bulk resistivity in different permeability classes as proposed by Florida Department of Transportation (FDOT) specification from 7 to 161 days. Furthermore, electrical resistivity data for several HPC mixtures and testing procedure provide multiple promising options for long lasting bridge decks against chloride induced corrosion due to its ease of implementation, repeatability, non-destructive nature, and low cost.

Breakdown Characteristics of $SF_6/CF_4$ Mixtures under AC Voltages in Uniform, Nonuniform Field (평등, 불평등 전계에서 AC전압의 $SF_6/CF_4$ 혼합가스 절연내력 특성)

  • Sung, Heo-Gyung;Hwang, Cheong-Ho;Kim, Nam-Ryul;Huh, Chang-Su
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1334-1335
    • /
    • 2008
  • Although many studies have been carried out about binary gas mixtures with $SF_6$, few studies were presented about breakdown characteristics of $SF_6/CF_4$ mixtures. At present study the breakdown characteristics of $SF_6/CF_4$ mixtures in uniform and nonuniform field was performed. The experiments were carried out under AC voltages. The sphere-sphere electrode whose gap distance was 1 mm was used and the point-plane electrode whose gap distance was 3 mm was used in a test chamber. $SF_6/CF_4$ mixture contained 20% $SF_6$ and 80% $CF_4$ and the experimental gas pressure ranged from 0.1 to 0.5 MPa. The results show that addition of $SF_6/CF_4$ mixtures increase AC breakdown voltages. In uniform field the breakdown voltages of gas were linearly increased according to the pressure. However in nonuniform field the breakdown voltages of gas were increased nonlinearly.

  • PDF