• 제목/요약/키워드: Bimorph Bender

검색결과 6건 처리시간 0.02초

Enhancement of Structural Safety Using Piezoelectric Bimorph

  • Loh, Byoung-Gook
    • International Journal of Safety
    • /
    • 제6권1호
    • /
    • pp.22-25
    • /
    • 2007
  • Damping out high frequency low amplitude structural vibrations using PZT bimorph is presented. Static and Dynamic analyses of the piezoelectric bimorph bender were performed. Three layer piezoelectric actuators were modeled with SOLID5 coupled-field elements using ANSYS. Static deflection and modal analyses of the piezoelectric bimorph bender are presented. Proper tuning of the values of the resistor and inductor in the shunt circuit is required for maximum vibration suppression.

압전 벤더의 효과적인 모델링 기법 (An Effective Quasi-static Modeling of the Piezoelectric Benders)

  • 박종규;문원규
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.133-142
    • /
    • 2004
  • In this article, the constitutive relations of three types of piezoelectric benders, which are a unimorph bender, a bimorph bender and a triple-layer bender, are derived based on the beam theory under the quasi-static equilibrium condition. The relation coefficients are described as the geometry and material properties of the benders. More general constitutive relations involving fixed-free, fixed-roll, and fixed-simply supported boundary conditions under the inconsistent length condition between the piezoelectric layer and the nonpiezoelectric one are discussed. The complicated constitutive relations can be easily calculated and checked by using the symbolic function in ‘Mathematica’. The relation coefficients for the benders are plotted in three dimensional graph using the developed program.

적층 벤더형 압전 액추에이터 마이크로 밸브 (Microvalve with multilayer Bender Type PZT Actuator)

  • 윤소남;이경우;윤석진;박중호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.250-253
    • /
    • 2004
  • This study deals with the microvalve, which is composed of the multilayer bender type PZT actuator, actuator controller and microvalve body. The object of this study is to develope the microvalve with multilayer bender type PZT actuator. In order to achieve this object, prototype PZT actuator and microvalve were suggested and manufactured. Also, the performance of this model was evaluated through the experiments.

  • PDF

Bender Typed Piezoelectric Multilayer Actuator

  • Ahn, Byung-Guk;Lee, Dong-Kyun;Han, Deuk-Young;Kang, Chong-Yoon;Park, Ji-Won;Kim, Hyun-Jai;Yoon, Seok-Jin
    • 한국세라믹학회지
    • /
    • 제40권3호
    • /
    • pp.225-228
    • /
    • 2003
  • A Bender typed Multilayer Actuator(BMA) for decreasing the depolarization effect was designed and fabricated. Unlike bimorph and multimorph actuators in which depolarization occurred, the BMA did not generate depolarization because the polarization and the electric field directions are the same. The simulated results indicate that higher displacement of the BMA can be achieved by increasing input voltage. Compared with the multimorph actuator, the proposed actuator is expected to extend a life time as well as acceptable voltage range.

An experimental procedure for evaluating the consolidation state of marine clay deposits using shear wave velocity

  • Chang, Ilhan;Kwon, Tae-Hyuk;Cho, Gye-Chun
    • Smart Structures and Systems
    • /
    • 제7권4호
    • /
    • pp.289-302
    • /
    • 2011
  • In marine clay deposits, naturally formed or artificially reclaimed, the evaluation and monitoring of the consolidation process has been a critical issue in civil engineering practices due to the time frame required for completing the consolidation process, which range from several days to several years. While complementing the conventional iconographic method suggested by Casagrande and recently developed in-situ techniques that measure the shear wave, this study suggests an alternative experimental procedure that can be used to evaluate the consolidation state of marine clay deposits using the shear wave velocity. A laboratory consolidation testing apparatus was implemented with bimorph-type piezoelectric bender elements to determine the effective stress-shear wave velocity (${\sigma}^{\prime}-V_s$) relationship with the marine clays of interest. The in-situ consolidation state was then evaluated by comparing the in-situ shear wave velocity data with the effective stress-shear wave velocity relationships obtained from laboratory experiments. The suggested methodology was applied and verified at three different sites in South Korea, i.e., a foreshore site in Incheon, a submarine deposit in Busan, and an estuary delta deposit in Busan. It is found that the shear wave-based experimental procedure presented in this paper can be effectively and reliably used to evaluate the consolidation state of marine clay deposits.