• Title/Summary/Keyword: Bim Vision

Search Result 18, Processing Time 0.023 seconds

Development of a Rule-based BIM Tool Supporting Free-form Building Integrated Photovoltaic Design (비정형 건물일체형 태양광 발전 시스템 규칙기반 BIM설계 지원 도구 개발)

  • Hong, Sung-Moon;Kim, Dae-Sung;Kim, Min-Cheol;Kim, Ju-Hyung
    • Journal of KIBIM
    • /
    • v.5 no.4
    • /
    • pp.53-62
    • /
    • 2015
  • Korea has been at the forefront of green growth initiatives. In 2008, the government declared the new vision toward 'low-carbon society and green growth'. The government subsidies and Feed-in Tariff (FIT) increased domestic usage of solar power by supplying photovoltaic housing and photovoltaic generation systems. Since 2000, solar power industry has been the world's fastest growing source with the annual growth rate of 52.5%. Especially, BIPV(Building Integrated Photovoltaic) systems are capturing a growing portion of the renewable energy market due to several reasons. BIPV consists of photovoltaic cells and modules integrated into the building envelope such as a roof or facades. By avoiding the cost of conventional materials, the incremental cost of photovoltaics is reduced and its life-cycle cost is improved. When it comes to atypical building, numerous problems occur because PV modules are flat, stationary, and have its orientation determined by building surface. However, previous studies mainly focused on improving installations of solar PV technologies on ground and rooftop photovoltaic array and developing prediction model to estimate the amount of produced electricity. Consequently, this paper discusses the problem during a planning and design stage of BIPV systems and suggests the method to select optimal design of the systems by applying the national strategy and economic policies. Furthermore, the paper aims to develop BIM tool based on the engineering knowledge from experts in order for non-specialists to design photovoltaic generation systems easily.

Research on Digital Construction Site Management Using Drone and Vision Processing Technology (드론 및 비전 프로세싱 기술을 활용한 디지털 건설현장 관리에 대한 연구)

  • Seo, Min Jo;Park, Kyung Kyu;Lee, Seung Been;Kim, Si Uk;Choi, Won Jun;Kim, Chee Kyeung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.239-240
    • /
    • 2023
  • Construction site management involves overseeing tasks from the construction phase to the maintenance stage, and digitalization of construction sites is necessary for digital construction site management. In this study, we aim to conduct research on object recognition at construction sites using drones. Images of construction sites captured by drones are reconstructed into BIM (Building Information Modeling) models, and objects are recognized after partially rendering the models using artificial intelligence. For the photorealistic rendering of the BIM models, both traditional filtering techniques and the generative adversarial network (GAN) model were used, while the YOLO (You Only Look Once) model was employed for object recognition. This study is expected to provide insights into the research direction of digital construction site management and help assess the potential and future value of introducing artificial intelligence in the construction industry.

  • PDF

A Study on Architectural Image Generation using Artificial Intelligence Algorithm - A Fundamental Study on the Generation of Due Diligence Images Based on Architectural Sketch - (인공지능 알고리즘을 활용한 건축 이미지 생성에 관한 연구 - 건축 스케치 기반의 실사 이미지 생성을 위한 기초적 연구 -)

  • Han, Sang-Kook;Shin, Dong-Youn
    • Journal of KIBIM
    • /
    • v.11 no.2
    • /
    • pp.54-59
    • /
    • 2021
  • In the process of designing a building, the process of expressing the designer's ideas through images is essential. However, it is expensive and time consuming for a designer to analyze every individual case image to generate a hypothetical design. This study aims to visualize the basic design draft sketch made by the designer as a real image using the Generative Adversarial Network (GAN) based on the continuously accumulated architectural case images. Through this, we proposed a method to build an automated visualization environment using artificial intelligence and to visualize the architectural idea conceived by the designer in the architectural planning stage faster and cheaper than in the past. This study was conducted using approximately 20,000 images. In our study, the GAN algorithm allowed us to represent primary materials and shades within 2 seconds, but lacked accuracy in material and shading representation. We plan to add image data in the future to address this in a follow-up study.

A Study on Detection of Abnormal Patterns Based on AI·IoT to Support Environmental Management of Architectural Spaces (건축공간 환경관리 지원을 위한 AI·IoT 기반 이상패턴 검출에 관한 연구)

  • Kang, Tae-Wook
    • Journal of KIBIM
    • /
    • v.13 no.3
    • /
    • pp.12-20
    • /
    • 2023
  • Deep learning-based anomaly detection technology is used in various fields such as computer vision, speech recognition, and natural language processing. In particular, this technology is applied in various fields such as monitoring manufacturing equipment abnormalities, detecting financial fraud, detecting network hacking, and detecting anomalies in medical images. However, in the field of construction and architecture, research on deep learning-based data anomaly detection technology is difficult due to the lack of digitization of domain knowledge due to late digital conversion, lack of learning data, and difficulties in collecting and processing field data in real time. This study acquires necessary data through IoT (Internet of Things) from the viewpoint of monitoring for environmental management of architectural spaces, converts them into a database, learns deep learning, and then supports anomaly patterns using AI (Artificial Infelligence) deep learning-based anomaly detection. We propose an implementation process. The results of this study suggest an effective environmental anomaly pattern detection solution architecture for environmental management of architectural spaces, proving its feasibility. The proposed method enables quick response through real-time data processing and analysis collected from IoT. In order to confirm the effectiveness of the proposed method, performance analysis is performed through prototype implementation to derive the results.

3D WALK-THROUGH ENVIRONMENTAL MODEL FOR VISUALIZATION OF INTERIOR CONSTRUCTION PROGRESS MONITORING

  • Seungjun Roh;Feniosky Pena-Mora
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.920-927
    • /
    • 2009
  • Many schedule delays and cost overruns in interior construction are caused by a lack of understanding in detailed and complicated interior works. To minimize these potential impacts in interior construction, a systematic approach for project managers to detect discrepancies at early stages and take corrective action through use of visualized data is required. This systematic implementation is still challenging: monitoring is time-consuming due to the significant amount of as-built data that needs to be collected and evaluated; and current interior construction progress reports have visual limitations in providing spatial context and in representing the complexities of interior components. To overcome these issues, this research focuses on visualization and computer vision techniques representing interior construction progress with photographs. The as-planned 3D models and as-built photographs are visualized in a 3D walk-through model. Within such an environment, the as-built interior construction elements are detected through computer vision techniques to automatically extract the progress data linked with Building Information Modeling (BIM). This allows a comparison between the as-planned model and as-built elements to be used for the representation of interior construction progress by superimposing over a 3D environment. This paper presents the process of representing and detecting interior construction components and the results for an ongoing construction project. This paper discusses implementation and future potential enhancement of these techniques in construction.

  • PDF

Development of Automation Technology for Structural Members Quantity Calculation through 2D Drawing Recognition (2D 도면 인식을 통한 부재 물량 산출 자동화 기술 개발)

  • Sunwoo, Hyo-Bin;Choi, Go-Hoon;Heo, Seok-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.227-228
    • /
    • 2022
  • In order to achieve the goal of cost management, which is one of the three major management goals of building production, this paper introduces an approximate cost estimating automation technology in the design stage as the importance of predicting construction costs increases. BIM is used for accurate estimating, and the quantity of structural members and finishing materials is calculated by creating a 3D model of the actual building. However, only 2D basic design drawings are provided when making an estimating. Therefore, for accurate quantity calculation, digitization of 2D drawings is required. Therefore, this research calculates the quantity of concrete structural members by calculating the area for the recognition area through 2D drawing recognition technology incorporating computer vision. It is judged that the development technology of this research can be used as an important decision-making tool when predicting the construction cost in the design stage. In addition, it is expected that 3D modeling automation and 3D structural analysis will be possible through the digitization of 2D drawings.

  • PDF

The Present Status and Vision of Virtual Construction System Development (가상 건설 시스템 개발 현황과 비전)

  • Kim, Jae-Jun;Choi, Cul-Ho;Shin, Hyun-Mok;Jin, Sang-Yoon;Lee, Kwang-Myung
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.170-175
    • /
    • 2008
  • The research team for the virtual construction development was established with the support of Korea Ministry of Construction and Transportation, and KICTEP (Korea Institute of Construction and Transportation Technology Evaluation and Planning). Its aims are to develop system that is to improve productivity & quality, to create a higher value-added business, and to cultivate international competitiveness in the construction industry. The virtual construction system is a design, engineering, and construction management information system that allows the project participants to effectively share the information throughout the construction life cycle with the support of 3D and design information. To achieve this, the research team focuses on developing several systems. First, the team focuses on developing for the pre-planning, the structural engineering, MEP, and the 3D based estimation system. Second, they focus on developing a simulation system for the construction process planning and feasibility study with help of the virtual reality technologies. Third, they focus on developing the CPLM (Construction Project Life-cycle Management) system for managing construction project data, and the decision support system that makes the collaboration among the project participants based on 3D technologies and information. We also focus on developing the SDAI (Standard Data Access Interface), the localized guideline for 3D design, and a training program. In addition, we focus on developing the undeveloped area of the commercial system and building an environment that can support the communication and collaboration in the construction life-cycle rather than developing the existing and commercialized system.

  • PDF

A Study of Establishing the Development Strategy of Construction Project Management System Using SWOT Analysis (SWOT분석을 통한 건설사업관리시스템 개발전략 수립에 관한 연구)

  • Kim, SeongJin;Ok, Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.86-93
    • /
    • 2016
  • Information technology, such as IoT, Big Data, Drone, Cloud etc., is evolving every year. Information Society is changing Intelligence Society and Creative Society. A new Construction Projects Management System Roadmap is required because it is difficult to reflect the current IT environments based on the CALS(Continuous Acquisition & Life-cycle Support) master plan, which is performed to establish every five years since 1998. This study was prepared for the Roadmap with a focus on Construction Management System based on the 4th CALS master plan, which was performed to establish the 2012 year. To this end, the construction environment and several information systems were investigated and analyzed. The problems of the construction project information system were derived using SWOT analysis, the vision, goal, direction, strategy, main tasks, specific tasks, and timetable of the Construction Project Management System are presented. This roadmap is designed to be used as operational indicators of a future construction project management system.