• Title/Summary/Keyword: Billet

Search Result 339, Processing Time 0.023 seconds

Process Design for Hot Forging of Asymmetric to Symmetric Rail Steel (비대칭 레일강으로부터 대칭 레일강으로의 열간단조 공정설계)

  • 조해용;이기정;오병기;이학규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.666-669
    • /
    • 2002
  • Process design of hot forging, asymmetric to symmetric rail, which is used for the turnout of railway express has been investigated. Owing to the big difference in shape between the initial billet and the final forged product, it is impossible to hot forge the rail in a single step. Therefore, multi step forging as well as die design for each step are necessary for the production. The deformation behavior during hot forging has been analyzed by the numerical simulation through commercial FEA software, DEFORM$^{TM}$-2D. Modification of the design and repeated simulation have been carried out on the basis of the simulation result. For comparison with the simulation results, flow analysis experiment using plasticize has been also carried out. The results of the flow analysis experiment showed good agreement with those of the simulation. Therefore, the developed process design could be applied to the actual production.

  • PDF

Automatic Process Planning Design and Finite Element Method for The Multistage Cold Forged Parts (다단 냉간단조품의 자동공정설계시스템과 유한요소법)

  • 최재찬;김병민;이언호;김동진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.200-205
    • /
    • 1993
  • The automatic forming sequence design system can determine desirable operation sequences even if they have little experience in the design of cold forging process. This system is proposed,which generates forming sequence plans for the multistage cold forging of zxisymmetrical solid products. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the product is a key in planning processes. Forming sequence for the part can be determined by means of primitive geometries such as cylinder,cone, convex, and concave. By utilizing this geometrical characteristics(diameter,height, and radius),the product geometry is expressed by a list of the pnmitive geometries. Accordingly, the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the proper sequence of operations for the part, is generated under the environment of AutoCAD. The preliminary choice of some feasible forming sequences can verify by using the finite element simulation.

  • PDF

중공소재에 의한 스퍼어기어의 냉간단조

  • Choi, Jae-Chan;Heo, Gwan-Do;Kim, Chang-Ho;Choi, Young
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.224-230
    • /
    • 1993
  • Closed-die forging of spur gears with hollow cylindrical billet has been analysed by using the upper-bound method. A kinematically admiccible velocity field has been developed. wherein, an involute curve has been introduced to represent the forging die profile. In the analysis, the deformation regions have been divided into nine zones. A constant frictional stress has been assumed on the contacting surfaces. Utilizing the formulated velocity field, numerical calcuations have been carried out to investigate the effects of various parameters, such as module, number of teeth and friction factor,on the forging of spur gears.

  • PDF

Investigation on the Description Method of Extrusion Die Surface using NURBS Surface and Area Mapping Method (NURBS 곡면과 면적 사상법을 이용한 압출 금형곡면의 표현 방법에 관한 연구)

  • 유동진;권혁홍;임종훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.343-346
    • /
    • 2003
  • In order to construct the extrusion die surface of arbitrarily shaped sections, an automatic surface construction method based on NURBS surface and area mapping method is proposed in the present work. In the present study, a center point for area mapping is determined by introducing the marring concept based on constant area proportionality between original billet and final product. The characteristic points of inlet profile is determined using the traditional area mapping method and the root finding numerical method. The inlet and outlet profiles are precisely described with NURBS curves using the characteristic points of entry and exit sections. For the construction of NURBS surface, an interpolation method for the pre-determined two section curves has been developed to be used in the generation of interior control points and weights. To show the validity of the proposed method, automatic die surface generation is carried out for the several kinds of shaped sections.

  • PDF

Evaluation of Tool Life for Forging Die due to Lubricants and Suface Treatments (단조 금형의 윤활, 표면처리 및 금형 수명 평가)

  • 김병민
    • Transactions of Materials Processing
    • /
    • v.11 no.3
    • /
    • pp.211-216
    • /
    • 2002
  • The mechanical and thermal load, and thermal softening occuring by the rush temperature of die, in warm and hot forging, cause wear, heat cracking and plastic deformation, etc. This paper describes the effects of solid lubricants and surface treatments for warm forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatments and lubricants are very important to hot and warm forging process. The main factors affecting die hardness and heat transfer, are surface treatments and lubricants, which are related to heat transfer coefficient, etc. To verify the effects, experiments are performed for heat transfer coefficient in various conditions - different initial billet temperatures and different loads. Carbonitriding and ionitriding are used as surface treatments, and oil-base and water-base graphite lubricants are used. The effects of lubricant and surface treatment for warm and hot forging die life are explained by their thermal characteristics, and the new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

Finite Element Analysis of the Non-axisymmetric Extrusion Process (비축대칭 압출 공정의 유한 요소 해석)

  • 신현우
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.27-46
    • /
    • 1992
  • In this study a new simplified three-dimensional numerical method and the associated computer program have been developed to simulate the non-axisymmetric extrusion processes. The two-dimensional rigid-plastic finite element method under the generalized plane-strain condition, is combined with the slab method. To define the die geometry for non-axisymmetric extrusion, area mapping technique was used. Streamlined die surface was used to miniminze the total extrusion pressure. Extrusion of square, hexagonal and "T" section from round billet have been simulated and experimented with a model material. The computed results were in good agreement with the experiments in cross-sectional grid distortion. Computational results will be valuable for designing tool geometries and corresponding processes.

  • PDF

A Study on the Manufacturing of Die and Improvement of Process in Fiorging Work of Alternator Rotor Pole (앨터네이터 로터폴의 단조가공에서 공전개선과 금형제작에 관한 연구)

  • 김세환
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.54-61
    • /
    • 1997
  • Furthermore the rothor pole, with a solid type, manufactured by cold forging process at present should dmploy 3 press lines which consist of total 7 processes. Since A.S.B. treatment is prerequisite for the press line, the 3 times of A.S.B. treatment requires a long lead time, with little contribution to the reduction in cost. The author has investigated, through this researach, the possibility of a new forging method for a rotor pole production with (1) 2 pass instead of 3 press lines (2) only one A.S.B. treatment instead of 3 ones (3) solid type instead of sectional type, and (4) improvment of material property during process using a modified forging process and a specially designed die.

  • PDF

An Investigation on the Forging Process of an Irregular Shape Product (비대칭 형상제품의 단조공정에 관한 연구)

  • 정경빈;김현수;최영순;김용조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1101-1104
    • /
    • 2004
  • A brake spider in an irregular shape, which is used as a part in the braking system of a vehicle like a big truck and a trailer, is subjected to a large torque and hence requires both strength and endurance over the brake heat. Manufacture of this product in practice is generally composed of hot forging processes and machining. At the present study, two or more processes were considered for the hot forging. With an initial circular billet, blocker and finisher processes were analyzed using the rigid-plastic finite element method and also in addition to the preforming process. Proper forging processes to manufacture an irregular product without forging defects, which are preforming, blocker and finisher, were discussed and commented upon.

  • PDF

FEM Method Application for Extrusion process and Product improvement (압출공정 및 제품 향상을 위한 유한요소 해석기법의 적용)

  • 배재호;이정민;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.393-396
    • /
    • 2004
  • It have been proceeded that research of analysis of extrusion process using porthole die. recently it is performed partly through the finite element method in the non steady state that design variables. The subject of this research is integrity improvement of speaker body which is being produced by porthole die extrusion in my country. Extrusion load of speaker case, and welding pressure of billet in the chamber are estimated by the means of rigid-plasticity finite element method. And then extrusion of trial was performed to estimate the validity of FE analysis.

  • PDF

Finite Element Simulation for Design of Compound Forging Process for a Hollow Flanged Spindle (플랜지형 중공 스핀들의 복합단조 공정설계를 위한 유한요소 시뮬레이션)

  • Kim, Yohng-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.69-75
    • /
    • 2010
  • A hollow flanged spindle is generally used for the assembly of the driving shaft in some vehicles. This part has conventionally been manufactured by both hot forging and machining process, in which case a circular billet is hot-forged into a flanged spindle blank and then its central part is machined for hollow. Therefore, the development of a new forming technology without further machining processes has strongly been in demand. In this study, a new compound forging process of the hollow flanged spindle was proposed through the finite element simulation. By the proposed compound forging process, both extruding of the spindle body part and piercing for the hollow inside it can be performed at the same time. Metal flow patterns, forging defects and forging forces were investigated through the finite element simulation results.