• Title/Summary/Keyword: Bile acids

Search Result 165, Processing Time 0.03 seconds

Effects of Resistant Starch on Metabolism of Beile Acids in College Women (효소저항저분이 인체내 담즙산 대사에 미치는 영향)

  • 김지현;최인선;박소앙;신말식;오승호
    • Journal of Nutrition and Health
    • /
    • v.33 no.8
    • /
    • pp.802-812
    • /
    • 2000
  • The purpose of this study was to examine the effect of resistant starch(RS) in hyperchlesterolemia and colon cancer. The subjects of this study was eight college women participating in the general starch diet(GSD) period for 5 days and resistant starch diet(RSD) period for 7 days. RSD contains 30g or the RS. On the last day of each program blood were collected. And for the last 3 days of each diet period, the amount of all the food consumed by the subjects and feces were collected. Food was measured to determine and compared the energy, protein and fat intakes. The amount of total cholesterol, HDL-cholesterol, LDL-cholesterol and volatile fatty acids in plasma and the amounts of bile acids in feces were measured by gas chromatography. The results obtained were as follows, Daily energy intake was higher in the RSD compared with the GSD, Protein and fat intakes were lower in the RSD compared with the compared with the GSD. Volatile fatty acid contents in plasma, the amounts of acetic acid, propionic acid and valeric acid were higher in the RSD compared with the GSD. The amounts of bile acids in feces, cholic acid, chenodeoxycholic acid and lithocholic acid were higher in the RSD compared with the GSD, But the amount of deoxycholic acid n the RSD period was significantly low. Secondary/primary ratios of bile acids was lower in the RSD compared with GSD, respectively. We speculate that , RS consumption decreases colonic mucosal proliferation as a result of the decreased formation of cytotoxic secondary bile acids. Thus, RS intakes may contribute the prevention of heart disease and colon cancer in humans. (Korean J Nutrition 33(8) : 802-812, 2000)

  • PDF

Simultaneous Determination of Cholesterol, Bile Acids and Sterols in Human Bile Juices and Gallstones Using GC/MS (GC/MS에 의한 담석과 담즙내의 Cholesterol, Bile Acids 및 Sterols의 동시 Profiling)

  • Yang, Yoon Jung;Lee, Seon Hwa;Kim, Hyun Joo;Chung, Bong Chul
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.3
    • /
    • pp.266-276
    • /
    • 1998
  • Cholesterol supersaturation in bile, which causes gallstone formation, is the result of low bile acid secretion or high cholesterol secretion. The quantitative analysis of cholesterol, bile acids and sterols which are precursors of cholesterol have been used to examine the changes in bile component. We described a simple, sensitive and reproducible method for simultaneous determination of cholesterol, five bile acids and seven sterols in human bile juices and gallstones by capillary column gas chromatography-mass spectrometry (GC/MS). Clinical samples were hydrolyzed by alcoholic KOH, extracted twice (pH 14 and 1) and derivatized to trimethylsilyl (TMS) ether with $MSTFA/NH_4I$ (N-methyl-N-trimethylsilyltrifluoroacetamide/ammonium iodide) mixture in order to be detected on the GC/MS. The good quality control data were obtained through within-a-day and day-to-day test (RSD values were 1.72-13.79, 0.68-14.10, respectively) and the recovery range of them was 73.56-96. 95 Using this method, biliary and gallstone compositions in the patients with intrahepatic stones were analyzed. The amounts and its relative distribution of cholesterol, bile acids and sterols showed different pattern in bile juices and gallstones.

  • PDF

Inhibitory Effects of Bile Acids on the Cholesterol Biosynthesis in Cultured Hepatocytes (배양 간세포내에서의 콜레스테롤 합성에 대한 담즙산의 저해효과)

  • Kim, Sung-Wan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.5
    • /
    • pp.496-501
    • /
    • 1992
  • The present work tested the inhibitory effects of bile acids on the cholesterol biosynthesis and the activity of HMG-CoA reductase in cultured rat hepatocytes. The uptake of bile acids in hepatocytes were increased in according to the different bile acid concentrations and culture times. The rate of cholesterol synthesis in cells were inversely decreased to the bile acid concentrations and culture times. As expected, insulin injection (4 units/100g body weight) showed an enhancing effect of the cholesterol synthesis and the HMG-CoA reductase activity. The addition of bile acids in medium of insulin-treated hepatocytes also showed the suppressing effect. This effect was directly confirmed in isolated hepatic icrosomes by the test of HMG-CoA reductase activity. In the test of $Na^+$,$K^+$-ATPase activity in the isolated hepatocyte membrane, only the cholic acid did not stimulate the enzyme system. The reason of such difference is not obvious, but this result indicates that the cholic acid could be absorbed by simple diffusion.

  • PDF

Calcium-Dependent Cell Damage Induced by Bile Acid

  • Kim, Joo-Young;Kim, Kyung-Hwan;Lee, Min-Goo
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.24-24
    • /
    • 2002
  • The mechanism of how cholelithiasis increases the risk of acute pancreatitis remains obscure. When gallstones obstruct the lower biliary tract, bile acids can enter the pancreas either by luminal diffusion or by interstitial leakage. Here we provide the first evidence that bile acids can be transported into pancreatic acinar cells through the membrane transporters and induce cell death by impairing intracellular Ca$\^$2+/ signals.(omitted)

  • PDF

The Relationship to Dietary Fiber Intake and Fecal Bile Acid Profiles (식이 섬유소 섭취상태와 변 답즙산 조성과의 관계)

  • 황은희
    • Journal of Nutrition and Health
    • /
    • v.29 no.1
    • /
    • pp.41-49
    • /
    • 1996
  • Bacterial transformation of bile acids is possibly involved in colorectal carcinogenesis. n several epidemiological studies, the fecal bile acid dietary fiber are related to the indicence of colonic cancer. This study investigated the influence of age, dietary fiber intake on fecal bile acid profiles in healthy subject. The dietary fiber were assessed by mean of 24 hour dietary recall method, the subjects consist of 238 members aged 20 to 64 years old and feces are collected from the subjects. Fecal bile acids and neutral sterols were analyzed by gas chromatography. Mean dily crude fiber intake level was 7.7$\pm$1.4g(dietary fiber : 16.7$\pm$3.5g), dietary fiber intake range being 6.5-36.8g. The dietary fiber intake in elederly subject was significantly lower than in the other younger groups. Dietary fiber intakes was negatively correlated with the total bil acid concentation in feces. Probably, a decrease in dietary fiber intake results in higher fecal bile acid concentrations. The secondary bile acid concentration is related to the colon cancer, deoxycholic acid and lithocholic acid were significantly higher in elderly subjects. Concentration of fecal total bile acid, deoxycholic acid, coprostanol, coprostanone were higher in low dietary fiber intake group. These results suggest that the risk factor for colon cancer might be reduced, when dietary fibers are consummed more.

  • PDF

Omega-3 Polyunsaturated Fatty Acid for Cholestasis due to Bile Duct Paucity

  • Bae, Sun Hwan;Park, Hee Sun;Han, Hye Seung;Yun, Ik Jin
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.17 no.2
    • /
    • pp.121-124
    • /
    • 2014
  • Omega (${\omega}$)-3 polyunsaturated fatty acids appear to be effective in preventing and treating parenteral nutrition-associated liver disease, and several mechanisms were proposed for this observation. An 8-week-old male infant with cholestasis and acholic stool was diagnosed non-syndromic intrahepatic interlobular bile duct paucity by open-wedge liver biopsy. Initially he was treated with usual supportive medical therapy, including ursodeoxycholic acid. However, the clinical status and laboratory tests did not improve. Omega (${\omega}$)-3 polyunsaturated fatty acids (initially intravenous administration and oral administration later), were started and his liver function, including aminotransferase level and bilirubin levels normalized, and the ivory stool color turned green. We report the possible effectiveness of ${\omega}$-3 polyunsaturated fatty acids as a potent choleretic agent for non-syndromic intrahepatic interlobular bile duct paucity, a very rare structural pediatric hepatic disease.

THE ROLE OF BILE ACIDS ON THE PLASMA LIPIDS IN CHICKS GIVEN DIETS CONTAINING MEDIUM CHAIN TRIACYLGLYCEROL

  • Mabayo, R.T.;Furuse, M.;Yang, C-P;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.4
    • /
    • pp.513-516
    • /
    • 1994
  • The effects of the prevention of micelle formation and bile acid reabsorption, by using cholestyramine (CHOLN), a bile acid binding polymer, on the plasma lipid of Single Comb White Leghorn male chicks given diets containing medium chain triacylglycerol (MCT) and long chain triacylglycerol (LCT) were investigated. Corn oil and glyceryl tricaprylate were used as LCT and MCT sources, respectively. Plasma HDL cholesterol was reduced by CHOLN in all treatments. Plasma LDL cholesterol was reduced by CHOLN in chicks given LCT diet but not in MCT diet which could be accounted to the reduced plasma total cholesterol in LCT diet with CHOLN. It is concluded that bile acid binding does not alter the cholesteremic effect of MCT in the plasma of chicks.

Effect of Dietary Calcium and Fat on Plasma Cholesterol Level and Cholesterol Metabolism in 1, 2-dimethylhydrazine-treated Rats (Dimethylhydrazine으로 처리한 쥐에서 식이의 Calcium 함량과 지방종류에 따라 혈장 Cholesterol 수준과 Cholesterol 대사에 미치는 영향)

  • 박현서;지은이;강금지
    • Journal of Nutrition and Health
    • /
    • v.31 no.9
    • /
    • pp.1394-1403
    • /
    • 1998
  • The study was designed to observe the effect of dietary calcium and fats on plasma cholesterol level, hepatic microsomal fluidity and HMG-CoA reductase activity as well as the excretion of fecal bile acids and neutral sterols in 1, 2-dimethylhydrazine(DMH)-treated rats. Male Sprague Dawley rats, at 7 weeks of age, were divided into 2 groups, 0.3% and 1.0% Ca levels and each group again subdivided into 2 groups of corn oil and perilla oil. Each rat was intramuscularly infused with DMH for 6 weeks to give total dose of 180mg/kg body weight and also fed experimental diet containing 15%(w/w) different fit and Ca(0.3% or 1.0%) for 20 weeks. High dietary calcium(1.0%) did not significantly influence on plasma cholesterol as well as hepatic microsomal fluidity and HMG CoA reductase activity, but significantly reduced the excretion of total bile acid per gram of faces and increased the excretion of total neutral sterol. However, high dietary Ca reduced the excretion of secondary bile acid(deoxycholic and lithocholic acids) which was known as promoter for colon cancer. Perilla oil rich in n-3 ${\alpha}$-linolenic acid significantly decreased plasma cholesterol by increasing hepatic microsomal fluidity compared with corn oil, but did not influence on HMG CoA reductase activity. Perilla oil did not influence on fecal excretion of total and primary bile acids, but reduced the excretion of secondary bile acids. Therefore, it could be recommended to consume more fish product and food rich in calcium and use more perilla oil in meal preparation to prevent from coronary hear disease and colon cancer especially when high fit diet has been practiced. (Korean Nutrition 31(9) : 1394-1403, 1998)

  • PDF

Fructooligosaccharides Alter Profiles of Fecal Short-Chain Fatty Acids and Bile Acids in Rats

  • Sung, Hye-Young;Choi, Young-Sun;Cho, Sung-Hee;Yun, Jong-Won
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.51-56
    • /
    • 2006
  • We investigated the effects of fructooligosaccharides and chicory inulin on the profiles of cecal and fecal short-chain fatty acids (SCFAs) and fecal bile acids in rats. Thirty-six Sprague Dawley male rats weighing about 190 g were randomly divided among four treatments; control diet, control diet +6%(w/w) fructooligosaccharide (POS), control diet +6% chicory inulin oligosaccharide(CIOS), and control diet +6% chicory inulin(CI). The rats were pair-fed and experimental diets were maintained for 5 weeks. Cecal and fecal pH was significantly decreased in rats that were fed fructooligosaccharides and chicory inulin. Cecal propionate was significantly elevated in rats fed CIOS diets, and butyrate was lower in rats fed FOS and CI than control values. Cecal lactate was significantly higher in the FOS group than in the control group. The fecal excretions of acetate and total SCFA were 200-300% higher in rats that were fed fructooligosaccharides and chicory inulin than in the control group. Lactate excretion was highest in rats that were fed FOS, followed by those fed CIOS and CI. The cholic acid and total bile acid concentrations in feces were significantly lower in the rats that were fed fructooligosaccharides and chicory inulin. The deoxycholic acid concentrations in wet feces were significantly lower in the groups of rats that ate CIOS (0.186 mM), FOS (0.274 mM), and CI (0.362 mM) than in the control group (0.595 mM). Among the fructans, short-chain fructooligosaccharide was more effective at decreasing colonic pH and lactate production, but medium-chain chicory inulin oligosaccharide was more effective at increasing fecal butyrate and lowering the fecal secondary bile acid concentration.

Principles of Physiology of Lipid Digestion

  • Bauer, E.;Jakob, S.;Mosenthin, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.2
    • /
    • pp.282-295
    • /
    • 2005
  • The processing of dietary lipids can be distinguished in several sequential steps, including their emulsification, hydrolysis and micellization, before they are absorbed by the enterocytes. Emulsification of lipids starts in the stomach and is mediated by physical forces and favoured by the partial lipolysis of the dietary lipids due to the activity of gastric lipase. The process of lipid digestion continues in the duodenum where pancreatic triacylglycerol lipase (PTL) releases 50 to 70% of dietary fatty acids. Bile salts at low concentrations stimulate PTL activity, but higher concentrations inhibit PTL activity. Pancreatic triacylglycerol lipase activity is regulated by colipase, that interacts with bile salts and PTL and can release bile salt mediated PTL inhibition. Without colipase, PTL is unable to hydrolyse fatty acids from dietary triacylglycerols, resulting in fat malabsorption with severe consequences on bioavailability of dietary lipids and fat-soluble vitamins. Furthermore, carboxyl ester lipase, a pancreatic enzyme that is bile salt-stimulated and displays wide substrate reactivities, is involved in lipid digestion. The products of lipolysis are removed from the water-oil interface by incorporation into mixed micelles that are formed spontaneously by the interaction of bile salts. Monoacylglycerols and phospholipids enhance the ability of bile salts to form mixed micelles. Formation of mixed micelles is necessary to move the non-polar lipids across the unstirred water layer adjacent to the mucosal cells, thereby facilitating absorption.