• Title/Summary/Keyword: Bile Acids and Salts

Search Result 15, Processing Time 0.022 seconds

Complexation of Bile Acids with ${\beta}-Cyclodextrin$ (담즙산류과 베타-사이클로덱스트린간의 복합체 형성)

  • Lee, Seung-Yong;Chung, Youn-Bok;Han, Kun;Choi, Song-Am
    • YAKHAK HOEJI
    • /
    • v.38 no.1
    • /
    • pp.78-85
    • /
    • 1994
  • From phase solubility studies bile acids and bile salts were found to form stable inclusion complexes with ${\beta}-cyclodextrin$ in aqueous solution. Stability constant of bile acids were larger than that of bile salts. Phase solubility diagrams of most bile acids showed Higuchi's $A_I$ type but lithocholic acid showed $B_S$ type. Not only the solubility of bile acids but also that of ${\beta}-cyclodextrin$ increased, especially in cases of cholic acid and ursodeoxycholic acid. Solubility increase of bile acids from their ${\beta}-cyclodextrin$ inclusion complex followed the order : cholic acid>ursodeoxycholic acid>chenodeoxycholic acid>deoxycholic acid>lithocholic acid. It seems that solubility of inclusion complexes was directly related with the hydrophilicity of bile acids.

  • PDF

Principles of Physiology of Lipid Digestion

  • Bauer, E.;Jakob, S.;Mosenthin, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.2
    • /
    • pp.282-295
    • /
    • 2005
  • The processing of dietary lipids can be distinguished in several sequential steps, including their emulsification, hydrolysis and micellization, before they are absorbed by the enterocytes. Emulsification of lipids starts in the stomach and is mediated by physical forces and favoured by the partial lipolysis of the dietary lipids due to the activity of gastric lipase. The process of lipid digestion continues in the duodenum where pancreatic triacylglycerol lipase (PTL) releases 50 to 70% of dietary fatty acids. Bile salts at low concentrations stimulate PTL activity, but higher concentrations inhibit PTL activity. Pancreatic triacylglycerol lipase activity is regulated by colipase, that interacts with bile salts and PTL and can release bile salt mediated PTL inhibition. Without colipase, PTL is unable to hydrolyse fatty acids from dietary triacylglycerols, resulting in fat malabsorption with severe consequences on bioavailability of dietary lipids and fat-soluble vitamins. Furthermore, carboxyl ester lipase, a pancreatic enzyme that is bile salt-stimulated and displays wide substrate reactivities, is involved in lipid digestion. The products of lipolysis are removed from the water-oil interface by incorporation into mixed micelles that are formed spontaneously by the interaction of bile salts. Monoacylglycerols and phospholipids enhance the ability of bile salts to form mixed micelles. Formation of mixed micelles is necessary to move the non-polar lipids across the unstirred water layer adjacent to the mucosal cells, thereby facilitating absorption.

Screening of Thermotolerant Yeast for Use as Microbial Feed Additive

  • Lee, Jae-Heung;Lim, Yoo-Beom;Koh, Jong-ho;Baig, Soon-Yong;Shin, Hyung-Tai
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.162-165
    • /
    • 2002
  • With the objective of identifying the commercial potential of new direct-fed microbials, several temperature-tolerant strains were isolated from cane molasses at $39^{\circ}C$ and tested for their tolerance to pH, bile salts, and a mixture of volatile fatty acids (acetic acid:propionic acid:butyric acid=6.5:2.0:1.5). It was found that the isolated strain DY 252 grew very well up to pH 2.0 and was resistant to relatively high concentrations of bile salts. Among the strains tested, DY 252 was least inhibited by the addition of volatile fatty acids to the growth medium at $39^{\circ}C$. Accordingly, it would appear that strain DY 252, identified as yeast Issatchenkia orientalis, may be a potential candidate for use as a microbial feed additive.

Hypocholesterolemic Effect of Indigenous Dadih Lactic Acid Bacteria by Deconjugation of Bile Salts

  • Pato, Usman;Surono, Ingrid S.;Koesnandar, Koesnandar;Hosono, Akiyoshi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1741-1745
    • /
    • 2004
  • Administration of milk and fermented milks produced from indigenous dadih lactic acid bacteria on serum lipids and bile acids, fecal bile acids and microflora was estimated in hypercholesterolemic rats. Anaerobic lactic acid bacteria decreased and coliforms increased in the feces of the control group; however, the number of fecal lactic acid bacteria remained unchanged when rats were administered milk and fermented milks. Only fermented milk made from Lc. lactis subsp. lactis IS-10285 significantly reduced serum total cholesterol, LDL cholesterol and total bile acids. Milk and fermented milks did not influence the HDL cholesterol. Triglyceride and phospholipid levels were significantly lower in the rats fed fermented milk of Lc. lactis subsp. lactis IS-10285 than rats fed milk and fermented milk of Lc. lactis subsp. lactis IS-29862, but not significantly different from the control group. Hypocholesterolemic effect of Lc. lactis subsp. lactis IS-10285 was attributed to its ability to suppress the reabsorption of bile acids into the enterohepatic circulation and to enhance the excretion of bile acids in feces of hypercholesterolemic rats.

Biochemical and Molecular Insights into Bile Salt Hydrolase in the Gastrointestinal Microflora - A Review -

  • Kim, Geun-Bae;Lee, Byong H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1505-1512
    • /
    • 2005
  • Bile salt deconjugation is the most biologically significant reaction among the bacterial alterations of bile acids in the gastrointestinal tract of human and animal. The responsible enzyme, bile salt hydrolase (BSH), catalyzes the hydrolysis of glycineand/or taurine-conjugated bile salts into amino acid residues and deconjugated bile acids. Herein we review current knowledge on the distribution of BSH activity among various microorganisms with respect to their biochemical and molecular characteristics. The proposed physiological impact of BSH activity on the host animal as well as on the BSH-producing bacterial cells is discussed. BSH activity of the probiotic strains is examined on the basis of BSH hypothesis, which was proposed to explain cholesterol-lowering effects of probiotics. Finally, the potential applications of BSH research are briefly discussed.

Effect of Mixed Micelles on Jejunal and Nasal Absorption Enhancement of Piperacillin (피페라실린의 공장 및 비점막흡수 촉진에 대한 혼합미셀의 효과)

  • Park, Gee-Bae;Lee, Yong-Suk;Rho, Hyun-Goo;Lee, Kwang-Pyo
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.2
    • /
    • pp.71-80
    • /
    • 1993
  • The purpose of this study was to compare the intrinsic absorptivity of piperacillin in the jejunum and the nasal cavity, to investigate the effect of bile salts, fatty acids and their mixed micelles on the intestinal and nasal absorption of piperacilIin, to examine the reversibiIity of bile salt-fatty acid mixed micelles absorption promoting action and to design an effective intranasal drug delivery system for antibiotics. And absorption promoters used were bile salts [sodium cholate (NaC), sodium glycocholate (NaGC)], unsaturated fatty acids [oleic acid (OA), linoleic acid (LA)] and their mixed micelles (NaC-LA). The present study employed the in situ nasal and intestinal perfusion technique in rats. The apparent permeabilities $(P_{app})$ of piperacillin were $0.40{\pm}0.04{\times}10^{-5}cm/sec(mean{\pm}S.E)$ in the jejunum and $1.32{\pm}0.08{\times}10^{-5}\;cm/sec$ in the nasal cavity, which indicated that intrinsic absorptivity of piperacillin was greater in the nasal cavity than in the jejunum. When absorption promoters were used in the rat nasal cavity, the decreasing order of apparent piperacillin permeability $(P_{app},\;10^{-5}\;cm/sec)$, corrected for surface area of absorption, was NaC-LA $(4.62{\pm}0.16)$> NaC $(4.36{\pm}0.32)$>LA$(2.24{\pm}0.26)$ NaGC $(2.17{\pm}0.21)$>OA $(1.53{\pm}0.16)$. The increase in permeability of piperacillin was 3.5-fold in the rat nasal cavity and 1.5-fold in the rat jejunum for formulations containing NaC-LA mixed micelles as compared to those without absorption enhancer. The effect of NaC-LA mixed micellar solutions was synergistic and was greater than that with single adjuvant. The reversibility of nasal mucosal permeability was observed within approximately 2 hr after removal of NaCLA mixed micelles from the nasal cavity. These results suggest that NaC-LA mixed micelles can be used as nasal mucosal absorption promoters of poorly absorbed drugs.

  • PDF

Effects of Mustard Leaf(Brassica Juncea) on Cholesterol Metabolism in Rats (갓의 급이가 흰쥐의 Cholesterol 대사에 미치는 영향)

  • 조영숙
    • Journal of Nutrition and Health
    • /
    • v.26 no.1
    • /
    • pp.13-20
    • /
    • 1993
  • To investigate the effects mustard leaf(Brassica Juncea) on Cholesterol metabolism, male Sprague Dawley rate were fed semipurified diets containing 2% or 4% mustard leaf with or without cholesterol for 5 weeks. Plasma cholesterol content decreased significantly by feeding 4% mustard leaf with of without cholesterol for 5 weeks. Plasma cholesterol content decreased significantly by feeding 4% mustard leaf in rats fed 1% cholesterol in the diet. In addition, HDL-cholesterol increased slightly by the feeding of mustard leaf, resulting in a significant increase in the HDL-cholesterol/total cholesterol ratio and a reduction of atherosclerotic index. However, levels of plasma lipids were not influenced by mustared leaf in rats fed cholesterol-free diet. The contents of all classes of lipid in liver increased by dietary cholesterol. Of the liver lipids, triglyceride and cholesterol ester were accumulated most, showing a fatty liver synodrome. Supplementation of mustard leaf to cholesterol-containing diet resulted in a slight decrease in neutral lipid contents of liver. Fecal cholesterol excretion was higher by more than 2.7 and 3.3-fold in rats fed 2 and 4% mustard leaf than in control rats fed cholesterol. Similar trends were found in fecal bile salt excretion; rats fed and 4% mustard leaf excreted more bile salts by more than 1.5 and 2% than those fed control diet containing cholesterol. In summary, mustard leaf may have an antiatherogenci effect of reducing plasma cholesterol level and increasing HDL-cholesterol level. The plasma cholesterol lowering effect of mustard leaf is suggested to be due, at least in part, to increase in fecal excretion of cholesterol and bile acids.

  • PDF

Complete Recovery of Oxysterol 7α-Hydroxylase Deficiency by Living Donor Transplantation in a 4-Month-Old Infant: the First Korean Case Report and Literature Review

  • Hong, Jeana;Oh, Seak Hee;Yoo, Han-Wook;Nittono, Hiroshi;Kimura, Akihiko;Kim, Kyung Mo
    • Journal of Korean Medical Science
    • /
    • v.33 no.51
    • /
    • pp.324.1-324.6
    • /
    • 2018
  • Oxysterol $7{\alpha}$-hydroxylase deficiency is a very rare liver disease categorized as inborn errors of bile acid synthesis, caused by CYP7B1 mutations. As it may cause rapid progression to end-stage liver disease even in early infancy, a high index of suspicion is required to prevent fatal outcomes. We describe the case of a 3-month-old boy with progressive cholestatic hepatitis and severe hepatic fibrosis. After excluding other etiologies for his early liver failure, we found that he had profuse urinary excretion of $3{\beta}$-monohydroxy-${\Delta}^5$-bile acid derivatives by gas chromatography/mass spectrometry analysis with dried urine spots on filter paper. He was confirmed to have a compound heterozygous mutation (p.Arg388Ter and p.Tyr469IlefsX5) of the CYP7B1 gene. After undergoing liver transplantation (LT) from his mother at 4 months of age, his deteriorated liver function completely normalized, and he had normal growth and development until the current follow-up at 33 months of age. We report the first Korean case of oxysterol $7{\alpha}$-hydroxylase deficiency in the youngest infant reported to undergo successful living donor LT to date.

Changes in Cell Membrane Fatty Acid Composition of Streptococcus thermophilus in Response to Gradually Increasing Heat Temperature

  • Min, Bonggyu;Kim, Kkotnim;Li, Vladimir;Cho, Seoae;Kim, Heebal
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.739-748
    • /
    • 2020
  • In this study, a method of heat adaptation was implemented in an attempt to increase the upper thermal threshold of two Streptococcus thermophilus found in South Korea and identified the alterations in membrane fatty acid composition to adaptive response to heat. In order to develop heat tolerant lactic acid bacteria, heat treatment was continuously applied to bacteria by increasing temperature from 60℃ until the point that no surviving cell was detected. Our results indicated significant increase in heat tolerance of heat-adapted strains compared to the wild type (WT) strains. In particular, the survival ratio of basically low heat-tolerant strain increased even more. In addition, the strains with improved heat tolerance acquired cross protection, which improved their survival ratio in acid, bile salts and osmotic conditions. A relation between heat tolerance and membrane fatty acid composition was identified. As a result of heat adaptation, the ratio of unsaturated to saturated fatty acids (UFA/SFA) and C18:1 relative concentration were decreased. C6:0 in only heat-adapted strains and C22:0 in only the naturally high heat tolerant strain were detected. These results support the hypothesis, that the consequent increase of SFA ratio is a cellular response to environmental stresses such as high temperatures, and it is able to protect the cells from acid, bile salts and osmotic conditions via cross protection. This study demonstrated that the increase in heat tolerance can be utilized as a mean to improve bacterial tolerance against various environmental stresses.

Cholesterol Uptake by Lactobacillus acidophilus: Its Fate and Factors Influencing the Uptake (Lactobacillus acidophilus에 의한 콜레스테롤의 흡착)

  • Noh, Dong-Ouk
    • Journal of Dairy Science and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.195-206
    • /
    • 1996
  • Cholesterol assimilated by Lactobacillus acidophilus ATCC 43121 was not metabolically degraded in that most of it was recovered with the cells. Cells grown in the presence of cholesterol micelles and bile salts were more resistant to Iysis by sonication than those grown in their absence, suggesting a possible alteration of cellular membranes. Cholesterol assimilation occurred during growth at pH 6.0, the amount of which was more than that by cells grown without pH control. Cholesterol assimilated by cells was recovered in the membrane fractions of cells both grown at pH 6.0 and without pH control. The effect of unsaturated fatty acids on cholesterol assimilation was not clear, since there was no significant (P> 0.05) difference in the amount taken up from micelles prepared using L-${\alpha}$-phosphatidylcholine, dioleoyl or L-${\alpha}$-phosphatidylcholine, distearoyl. Without Tween 80, little, if any, cell growth or cholesterol uptake was observed. In the presence of 0.05% Tween 80, cholesterol uptake increased dramatically as did growth. However, as the amount of Tween 80 increased beyond 0.05%, cholesterol uptake decreased while the amount of growth remained the same.

  • PDF