• Title/Summary/Keyword: Bilateral

Search Result 3,575, Processing Time 0.026 seconds

Effectiveness Assessment on Jaw-Tracking in Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy for Esophageal Cancer (식도암 세기조절방사선치료와 용적세기조절회전치료에 대한 Jaw-Tracking의 유용성 평가)

  • Oh, Hyeon Taek;Yoo, Soon Mi;Jeon, Soo Dong;Kim, Min Su;Song, Heung Kwon;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • Purpose : To evaluate the effectiveness of Jaw-tracking(JT) technique in Intensity-modulated radiation therapy(IMRT) and Volumetric-modulated arc therapy(VMAT) for radiation therapy of esophageal cancer by analyzing volume dose of perimetrical normal organs along with the low-dose volume regions. Materials and Method: A total of 27 patients were selected who received radiation therapy for esophageal cancer with using $VitalBeam^{TM}$(Varian Medical System, U.S.A) in our hospital. Using Eclipse system(Ver. 13.6 Varian, U.S.A), radiation treatment planning was set up with Jaw-tracking technique(JT) and Non-Jaw-tracking technique(NJT), and was conducted for the patients with T-shaped Planning target volume(PTV), including Supraclavicular lymph nodes(SCL). PTV was classified into whether celiac area was included or not to identify the influence on the radiation field. To compare the treatment plans, Organ at risk(OAR) was defined to bilateral lung, heart, and spinal cord and evaluated for Conformity index(CI) and Homogeneity index(HI). Portal dosimetry was performed to verify a clinical application using Electronic portal imaging device(EPID) and Gamma analysis was performed with establishing thresholds of radiation field as a parameter, with various range of 0 %, 5 %, and 10 %. Results: All treatment plans were established on gamma pass rates of 95 % with 3 mm/3 % criteria. For a threshold of 10 %, both JT and NJT passed with rate of more than 95 % and both gamma passing rate decreased more than 1 % in IMRT as the low dose threshold decreased to 5 % and 0 %. For the case of JT in IMRT on PTV without celiac area, $V_5$ and $V_{10}$ of both lung showed a decrease by respectively 8.5 % and 5.3 % in average and up to 14.7 %. A $D_{mean}$ decreased by $72.3{\pm}51cGy$, while there was an increase in radiation dose reduction in PTV including celiac area. A $D_{mean}$ of heart decreased by $68.9{\pm}38.5cGy$ and that of spinal cord decreased by $39.7{\pm}30cGy$. For the case of JT in VMAT, $V_5$ decreased by 2.5 % in average in lungs, and also a little amount in heart and spinal cord. Radiation dose reduction of JT showed an increase when PTV includes celiac area in VMAT. Conclusion: In the radiation treatment planning for esophageal cancer, IMRT showed a significant decrease in $V_5$, and $V_{10}$ of both lungs when applying JT, and dose reduction was greater when the irradiated area in low-dose field is larger. Therefore, IMRT is more advantageous in applying JT than VMAT for radiation therapy of esophageal cancer and can protect the normal organs from MLC leakage and transmitted doses in low-dose field.

Eurasian Naval Power on Display: Sino-Russian Naval Exercises under Presidents Xi and Putin (유라시아 지역의 해군 전력 과시: 시진핑 주석과 푸틴 대통령 체제 하에 펼쳐지는 중러 해상합동훈련)

  • Richard Weitz
    • Maritime Security
    • /
    • v.5 no.1
    • /
    • pp.1-53
    • /
    • 2022
  • One manifestation of the contemporary era of renewed great power competition has been the deepening relationship between China and Russia. Their strengthening military ties, notwithstanding their lack of a formal defense alliance, have been especially striking. Since China and Russia deploy two of the world's most powerful navies, their growing maritime cooperation has been one of the most significant international security developments of recent years. The Sino-Russian naval exercises, involving varying platforms and locations, have built on years of high-level personnel exchanges, large Russian weapons sales to China, the Sino-Russia Treaty of Friendship, and other forms of cooperation. Though the joint Sino-Russian naval drills began soon after Beijing and Moscow ended their Cold War confrontation, these exercises have become much more important during the last decade, essentially becoming a core pillar of their expanding defense partnership. China and Russia now conduct more naval exercises in more places and with more types of weapons systems than ever before. In the future, Chinese and Russian maritime drills will likely encompass new locations, capabilities, and partners-including possibly the Arctic, hypersonic delivery systems, and novel African, Asian, and Middle East partners-as well as continue such recent innovations as conducting joint naval patrols and combined arms maritime drills. China and Russia pursue several objectives through their bilateral naval cooperation. The Treaty of Good-Neighborliness and Friendly Cooperation Between the People's Republic of China and the Russian Federation lacks a mutual defense clause, but does provide for consultations about common threats. The naval exercises, which rehearse non-traditional along with traditional missions (e.g., counter-piracy and humanitarian relief as well as with high-end warfighting), provide a means to enhance their response to such mutual challenges through coordinated military activities. Though the exercises may not realize substantial interoperability gains regarding combat capabilities, the drills do highlight to foreign audiences the Sino-Russian capacity to project coordinated naval power globally. This messaging is important given the reliance of China and Russia on the world's oceans for trade and the two countries' maritime territorial disputes with other countries. The exercises can also improve their national military capabilities as well as help them learn more about the tactics, techniques, and procedures of each other. The rising Chinese Navy especially benefits from working with the Russian armed forces, which have more experience conducting maritime missions, particularly in combat operations involving multiple combat arms, than the People's Liberation Army (PLA). On the negative side, these exercises, by enhancing their combat capabilities, may make Chinese and Russian policymakers more willing to employ military force or run escalatory risks in confrontations with other states. All these impacts are amplified in Northeast Asia, where the Chinese and Russian navies conduct most of their joint exercises. Northeast Asia has become an area of intensifying maritime confrontations involving China and Russia against the United States and Japan, with South Korea situated uneasily between them. The growing ties between the Chinese and Russian navies have complicated South Korean-U.S. military planning, diverted resources from concentrating against North Korea, and worsened the regional security environment. Naval planners in the United States, South Korea, and Japan will increasingly need to consider scenarios involving both the Chinese and Russian navies. For example, South Korean and U.S. policymakers need to prepare for situations in which coordinated Chinese and Russian military aggression overtaxes the Pentagon, obligating the South Korean Navy to rapidly backfill for any U.S.-allied security gaps that arise on the Korean Peninsula. Potentially reinforcing Chinese and Russian naval support to North Korea in a maritime confrontation with South Korea and its allies would present another serious challenge. Building on the commitment of Japan and South Korea to strengthen security ties, future exercises involving Japan, South Korea, and the United States should expand to consider these potential contingencies.

  • PDF

The study on the cleft lip and/or palate patients who visited Dept. of Orthodontics, Seoul National University Dental Hospital during last 11 years (1988.3-1999.2) (최근 11년간 서울대학교병원 교정과에 내원한 순구개열 환자의 내원 현황에 관한 연구(1988.3 - 1999.2))

  • Yang, Won-Sik;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.29 no.4 s.75
    • /
    • pp.467-481
    • /
    • 1999
  • Cleft lip and/or palate is one of the most common congenital craniofacial anomalies. According to previous epidemiologic studies, incidence of cleft lip and/or palate has been increasing nowadays. However, there is no report about epidemiologic study of cleft lip and/or palate patients who visited dept. of orthodontics in Korea. So the purpose of this study was to provide the epidemiological characteristics and important basic clinical data for the diagnosis and the treatment of the cleft lip and/or palate patients. With the orthodontic and cleft charts, diagnostic models and X-ray films from 250 patients with cleft lip and/or palate who visited Dept. of Orthodontics, Seoul National University Dental Hospital during the last 11 years, the authors investigated patient's visiting yew, types of cleft, patient's gender, and Angle's classification of malocclusion, and surgery timing. The results were as follows ; 1. The number of cleft patients who visited Dept. of Orthodontics, SNUDH increased during 1988-1990 and then it declined until 1992. From 1993 to 1996, it showed a stationary trend. After 1997 it showed an overwhelmingly increasing trend. 2. In the cleft type, the ratio of cleft lip cleft lip and alveolus cleft palate : cleft lip and palate was 7.6:19.2:9.6:63.6. In cleft position, unilateral clefts were more than bilateral ones (cleft lip 79:21, cleft lip and alveolus 77:23, cleft lip and palate 75.5:24.5). In cleft side, left clefts were mote than right clefts (cleft lip 53.3:46.7 cleft lip and alveolus 59.5:40.5, cleft lip and palate 59.2:40.8). 3. In gender ratio, males were more than females in cleft lip (57.9:42.1), cleft lip and alveolus (68.8:31.2) and cleft lip and palate (76.1:23.9). But in cleft Palate females were more than males as 41.7: 58.3. 4. In the age groups, 7-12 year group was the most abundant as $52\%$, and then 0-6 year group ($20.4\%$), 13-18 year group ($17.2\%$), more than 18 yew group ($10.4\%$) were followed as descending order. 5. Most of the cleft lip repair surgeries were operated in 0-3 month ($60.3\%$) and 4-6 month ($17.9\%$). 6. The cleft palate repair surgeries were done in 1-2 year ($31.7\%$), 0-1 year ($25.6\%$), 2-3 year ($12.1\%$), more than 5 year ($11.6\%$) as descending order. 7. The lip scar revision surgeries were done before admission at elementary school in $60\%$. (4-6 you ($27.5\%$), 6-8 year ($19.6\%$), more than 10 year ($19.6\%$), 2-4 year ($13.7\%$) as descending order) 8. The rhinoplasties were done before admission at elementary school in $51.7\%$. (0-2 year ($7.1\%$), 2-4 year ($14.3\%$), 4-6 year ($21.4\%$), 6-8 year ($14.3\%$)). 9. The pharyngeal flap were done at 6 Y (72.5 months) after birth on average and there was even distribution of surgery timing. 10. In relationship between Angle's classification of malocclusion and cleft types, Class I was most abundant and Class III, Class II were followed as descending order in cleft lip group. But Class III was most abundant and Class I, Class II were followed as descending order in cleft lip and alveolus group, cleft palate group, and cleft lip and Palate group. The percentage of frequency in Class III malocclusion was overwhelmingly higher in cleft lip and palate group than any other groups. 11. Because the frequency of class III malocclusion was most prevalent in all age groups, anterior crossbite was the most common chief complaint of cleft patients.

  • PDF

EVALUATION OF CONDYLAR POSITION USING COMPUTED TOMOGRAPH FOLLOWING BILATERAL SAGITTAL SPLIT RAMUS OSTEOTOMY (전산화단층촬영법을 이용한 하악 전돌증 환자의 하악지 시상 골절단술후 하악과두 위치변화 분석)

  • Chol, Kang-Young;Lee, Sang-Han
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.4
    • /
    • pp.570-593
    • /
    • 1996
  • This study was intended to perform the influence of condyle positional change after surgical correction of skeletal Class III malocclusion after BSSRO in 20 patients(males 9, females 11) using computed tomogram that were taken in centric occlusion before, immediate, and long term after surgery and lateral cephalogram that were taken in centric occlusion before, 7 days within the period intermaxillary fixation, 24hour after removing intermaxillary fixation and long term after surgery. 1. Mean intercondylar distance was $84.45{\pm}4.01mm$ and horizontal long axis of condylar angle was $11.89{\pm}5.19^{\circ}$on right, $11.65{\pm}2.09^{\circ}$on left side and condylar lateral poles were located about 12mm and medial poles about 7mm from reference line(AA') on the axial tomograph. Mean intercondylar distance was $84.43{\pm}3.96mm$ and vertical axis angle of condylar angle was $78.72{\pm}3.43^{\circ}$on right, $78.09{\pm}6.12^{\circ}$on left. 2. No statistical significance was found on the condylar change(T2C-T1C) but it had definitive increasing tendency. There was significant decreasing of the distance between both condylar pole and the AA'(p<0.05) during the long term(TLC-T2C). 3. On the lateral cephalogram, no statistical significance was found between immediate after surgery and 24 hours after the removing of intermaxillary fixation but only the lower incisor tip moved forward about 0.33mm(p<0.05). Considering individual relapse rate, mean relapse rate was 1.2% on L1, 5.0% on B, 2.0% on Pog, 9.1% on Gn, 10.3% on Me(p<0.05). 4. There was statistical significance on the influence of the mandibular set-back to the total mandibular relapse(p<0.05). 5. There was no statistical significance on the influence of the mandibular set-back(T2-T1) to the condylar change(T2C-T1C), the condylar change(T2C-T1C, TLC-T2C) to the mandibular total relapse, the pre-operative condylar position to the condylar change(T2C-T1C, TLC-T2C), the pre-operative mandibular posture to the condylar change(T2C-T1C, TLC-T2C)(p>0.05). 6. The result of multiple regression analysis on the influence of the pre-operative condylar position to the total mandibular relapse revealed that the more increasing of intercondylar distance and condylar vertical axis angle and decreasing of condyalr head long axis angle, the more increasing of mandibular horizontal relapse(L1,B,Pog,Gn,Me) on the right side condyle. The same result was founded in the case of horizontal relapse(L1,Me) on the left side condyle.(p<0.05). 7. The result of multiple regression analysis on the influence of the pre-operative condylar position to the pre-operative mandibular posture revealed that the more increasing of intercondylar distance and condylar vertical axis angle and decreasing of condylar head long axis angle, the more increasing of mandibular vertical length on the right side condyle. and increasing of vertical lengh & prognathism on the left side condyle(p<0.05). 8. The result of simple regression analysis on the influence of the pre-operative mandibular posture to the mandibular total relapse revealed that the more increasing of prognathism, the more increasing of mandibular total relapse in B and the more increasing of over-jet the more increasing of mandibular total relapse(p<0.05). Consequently, surgical mandibular repositioning was not significantly influenced to the change of condylar position with condylar reposition method.

  • PDF

Comparisons of Unicortical and Bicortical Lateral Mass Screws in the Cervical Spine : Safety vs Strength (경추부의 후관절 나사못 고정술에서 단피질삽입법과 양피질 삽입법 간의 특성에 관한 비교)

  • Park, Choon-Keun;Hwang, Jang-Hoe;Ji, Chul;Lee, Jae Un;Sung, Jae Hoon;Choi, Seung-Jin;Lee, Sang-Won;Seybold, Eric;Park, Sung-Chan;Cho, Kyung-Suok;Park, Chun-Kun;Kang, Joon-Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.10
    • /
    • pp.1210-1219
    • /
    • 2001
  • Introduction : The purpose of this study was to analyze the safety, pullout strength and radiographic characteristics of unicortical and bicortical screws of cervical facet within cadaveric specimens and evaluate the influence of level of training on the positioning of these screws. Methods : Twenty-one cadavers, mean 78.9 years of age, underwent bilateral placement of 3.5mm AO lateral mass screw from C3-C6(n=168) using a slight variation of the Magerl technique. Intraoperative imaging was not used. The right side(unicortical) utilized only 14mm screws(effective length of 11mm) while on the left side to determine the length of the screw after the ventral cortex had been drilled. Three spine surgeons(attending, fellow, chief resident) with varying levels of spine training performed the procedure on seven cadavers each. All spines were harvested and lateral radiographs were taken. Individual cervical vertebrae were carefully dissected and then axial radiographs were taken. The screws were evaluated clinically and radiographically for their safety. Screws were graded clinically for their safety with respect to the spinal cord, facet joint, nerve root and vertebral artery. The grades consisted of the following categories : "satisfactory", "at risk" and "direct injury". Each screw was also graded according to its zone placement. Screw position was quantified by measuring a sagittal angle from the lateral radiograph and an axial angle from the axial radiograph. Pull-out force was determined for all screws using a material testing machine. Results : Dissection revealed that fifteen screws on the left side actually had only unicortical and not bicortical purchase as intended. The majority of screws(92.8%) were satisfactory in terms of safety. There were no injuries to the spinal cord. On the right side(unicortical), 98.9% of the screws were "satisfactory" and on the left side(bicortical) 68.1% were "satisfactory". There was a 5.8% incidence of direct arterial injury and a 17.4% incidence of direct nerve root injury with the bicortical screws. There were no "direct injuries" with the unicortical screws for the nerve root or vertebral artery. The unicortical screws had a 21.4% incidence of direct injury of the facet joint, while the bicortical screws had a 21.7% incidence. The majority of "direct injury" of bicortical screws were placed by the surgeon with the least experience. The performance of the resident surgeon was significantly different from the attending or fellow(p<0.05) in terms of safety of the nerve root and vertebral artery. The attending's performance was significantly better than the resident or fellow(p<0.05) in terms of safety of the facet joint. There was no relationship between the safety of a screw and its zone placement. The axial deviation angle measured $23.5{\pm}6.6$ degrees and $19.8{\pm}7.9$ degrees for the unicortical and bicortical screws, respectively. The resident surgeon had a significantly lower angle than the attending or fellow(p<0.05). The sagittal angle measured $66.3{\pm}7.0$ degrees and $62.3{\pm}7.9$ degrees for the unicortical and bicortical screws, respectively. The attending had a significantly lower sagittal angle than the fellow or resident(p<0.05). Thirty-three screws that entered the facet joint were tested for pull-out strength but excluded from the data because they were not lateral mass screws per-se and had deviated substantially from the intended final trajectory. The mean pull-out force for all screws was $542.9{\pm}296.6N$. There was no statistically significant difference between the pull-out force for unicortical($519.9{\pm}286.9N$) and bicortical($565.2{\pm}306N$) screws. There was no significant difference in pull-out strengths with respect to zone placement. Conclusion : It is our belief that the risk associated with bicortical purchase mandates formal spine training if it is to be done safely and accurately. Unicortical screws are safer regardless of level of training. It is apparent that 14mm lateral mass screws placed in a supero-lateral trajectory in the adult cervical spine provide an equivalent strength with a much lower risk of injury than the longer bicortical screws placed in a similar orientation.

  • PDF