• Title/Summary/Keyword: Bike Carrier

Search Result 3, Processing Time 0.016 seconds

Structure Structural Durability Analysis on Bike Carrier Basket (자전거 짐받이에 대한 구조적 내구성 해석)

  • Cho, Jaeung;Han, Moonsik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.70-76
    • /
    • 2013
  • This study investigates structural durability through the analyses of stress, fatigue life and vibration damage at bike carrier basket. As model 2 has less stress and deformation than model 1 on static structural analysis, model 2 becomes more durable than model 1. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. The amplitude deformations become highest at maximum response frequency of 2400Hz in cases of models 1 and 2. As the values of maximum equivalent stresses become within the allowable material stresses at two holes at the upper parts on models 1 and 2, these models become safe. The structural result of this study can be effectively utilized with the design of bike carrier basket by investigating prevention and durability against fatigue or vibration damage.

Analysis of Load Input to Vehicle Body Due to Diversification of Environment of Towing Device (견인 장치 사용 환경 다양화에 따른 차체 입력하중 분석)

  • Choi, Jaesung
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.40-48
    • /
    • 2018
  • Purpose: This research is to develop Trailer Durability Test of towing device, in order to cover usage conditions of bike type as well as general type trailer. With the diversification of leisure activities, the population that enjoys various sports and leisure has increased rapidly, and the number of vehicles equipped with camping trailers and bike carriers is also increasing steadily. The purpose of this study is to develop a durable vehicle that has no problem in various customer conditions. Methods: We measured the input load under various conditions of the user by attaching load cell to the body fixing part and towing ball of the towing device. The load in various modes was measured, and the difference between the trailer and the bike carrier type was compared and analyzed. Results: Due to the difference in fixing method and weight between the two types, the trailer has a large longitudinal force and the bike type has a large vertical force. Therefore, it is necessary to durability test method capable of satisfying all longitudinal force and vertical force. Conclusion: We improved the durability test of the towing device by changing the test surface. The new mode has made it possible to shorten the durability test schedule by increasing test efficiency.

Structural Analysis of a Suction Pad for a Removable Bike Carrier using Computational and Experimental Methods (탈착식 자전거 캐리어용 흡착 패드의 실험 및 전산적 방법을 활용한 구조해석)

  • Suh, Yeong Sung;Lim, Geun Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.622-628
    • /
    • 2016
  • As the suction pad-supporting bike carrier attached to a car may be subject to an excessive dynamic load due to random vibrations and centrifugal forces during driving, its structural safety is of great concern. To examine this, the finite-element method with a fluid-structure interaction should be used because the pressure on the pad bottom is changed in real time according to the fluctuations of the force or the moment applied on the pad. This method, however, has high computing costs in terms of modeling efforts and software expense. Moreover, the accuracy of computation is not easily guaranteed. Therefore, a new method combining the experiment and computation is proposed in this paper: the bottom pressure and contact area of the pad under varying loads was measured in real time and the acquired data are then used in the nonlinear elastic finite-element calculations. The computational and experimental results obtained with the product under development showed that the safety margin of the pad under the axial loading is relatively sufficient, whereas with an excessive rotational loading, the pad is vulnerable to separation or a local surface damage; hence, the safety margin may not be secured. The predicted contact behavior under the variation of the magnitude and type of the loading were in good agreement with the one from the experiment. The proposed analysis method in this study could be used in the design of similar vacuum pad systems.