• Title/Summary/Keyword: Bigdata Analytic

Search Result 8, Processing Time 0.017 seconds

A Study on the Effect of Analytic Resources to Business Performance under Big Data Environments (빅데이터 환경에서 분석 자원이 기업 성과에 미치는 영향)

  • Kim, Seung-Hyun;Park, Jooseok;Park, Jea-Hong;Kim, Inhyun
    • The Journal of Bigdata
    • /
    • v.1 no.1
    • /
    • pp.23-32
    • /
    • 2016
  • With the rapid development of information technology, we can manage not only structured data but also unstructured data. Big data environments drive new business values. This study examines the effect of analytic resources to business performance under big data environments. Recent worldwide reports showed empirical performance results of big data applications. Compared to these reports, we attempt to analyze resources of big data applications to companies in Korea. This study results in current status of big data use in Korea. and will help to develop a maturity model of big data applications.

  • PDF

Analysis of Sales Volume by Products According to Temperature Change Using Big Data Analysis (빅데이터 분석을 통한 기온 변화에 따른 상품의 판매량 분석)

  • Hong, Jun-Ki
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.85-91
    • /
    • 2019
  • Since online shopping has become common, people can easily buy fashion goods anytime, anywhere. Therefore, consumers quickly respond to various environmental variables such as weather and sales prices. Thus, utilizing big data for efficient inventory management has become very important in the fashion industry. In this paper, the changes in sales volume of fashion goods due to changes in temperature is analyzed via the proposed big data analysis algorithm by utilizing actual big data from Korean fashion company 'B'. According to the analytic results, the proposed big data analysis algorithm found both expected and unexpected changes in sales volume depending on the characteristics of the fashion goods.

  • PDF

Real time predictive analytic system design and implementation using Bigdata-log (빅데이터 로그를 이용한 실시간 예측분석시스템 설계 및 구현)

  • Lee, Sang-jun;Lee, Dong-hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.6
    • /
    • pp.1399-1410
    • /
    • 2015
  • Gartner is requiring companies to considerably change their survival paradigms insisting that companies need to understand and provide again the upcoming era of data competition. With the revealing of successful business cases through statistic algorithm-based predictive analytics, also, the conversion into preemptive countermeasure through predictive analysis from follow-up action through data analysis in the past is becoming a necessity of leading enterprises. This trend is influencing security analysis and log analysis and in reality, the cases regarding the application of the big data analysis framework to large-scale log analysis and intelligent and long-term security analysis are being reported file by file. But all the functions and techniques required for a big data log analysis system cannot be accommodated in a Hadoop-based big data platform, so independent platform-based big data log analysis products are still being provided to the market. This paper aims to suggest a framework, which is equipped with a real-time and non-real-time predictive analysis engine for these independent big data log analysis systems and can cope with cyber attack preemptively.

A Study on the Calculation and Provision of Accruals-Quality by Big Data Real-Time Predictive Analysis Program

  • Shin, YeounOuk
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.193-200
    • /
    • 2019
  • Accruals-Quality(AQ) is an important proxy for evaluating the quality of accounting information disclosures. High-quality accounting information will provide high predictability and precision in the disclosure of earnings and will increase the response to stock prices. And high Accruals-Quality, such as mitigating heterogeneity in accounting information interpretation, provides information usefulness in capital markets. The purpose of this study is to suggest how AQ, which represents the quality of accounting information disclosure, is transformed into digitized data in real-time in combination with IT information technology and provided to financial analyst's information environment in real-time. And AQ is a framework for predictive analysis through big data log analysis system. This real-time information from AQ will help financial analysts to increase their activity and reduce information asymmetry. In addition, AQ, which is provided in real time through IT information technology, can be used as an important basis for decision-making by users of capital market information, and is expected to contribute in providing companies with incentives to voluntarily improve the quality of accounting information disclosure.

Discovering Essential AI-based Manufacturing Policy Issues for Competitive Reinforcement of Small and Medium Manufacturing Enterprises (중소 제조기업의 경쟁력 강화를 위한 제조AI 핵심 정책과제 도출에 관한 연구)

  • Kim, Il Jung;Kim, Woo Soon;Kim, Joon Young;Chae, Hee Su;Woo, Ji Yeong;Do, Kyung Min;Lim, Sung Hoon;Shin, Min Soo;Lee, Ji Eun;Kim, Heung Nam
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.4
    • /
    • pp.647-664
    • /
    • 2022
  • Purpose: The purpose of this study is to derive major policies that domestic small and medium-sized manufacturing companies should consider to maximize productivity and quality improvement by utilizing manufacturing data and AI, and to find priorities and implications. Methods: In this study, domestic and international issues and literature review by country were conducted to derive major considerations such as manufacturing AI technology, manufacturing AI talent, manufacturing AI data and manufacturing AI ecosystem. Additionally, the questionnaire survey targeting 46 experts of manufacturing data and AI industry were conducted. Finally, the major considerations and detailed factors importance were derived by applying the Analytic Hierarchy Process (AHP). Results: As a result of the study, it was found that 'manufacturing AI technology', 'manufacturing AI talent', 'manufacturing AI data', and 'manufacturing AI ecosystem' exist as key considerations for domestic manufacturing AI. After empirical analysis, the importance of the four key considerations was found to be 'manufacturing AI ecosystem (0.272)', 'manufacturing AI data (0.265)', 'manufacturing AI technology (0.233)', and 'manufacturing AI talent (0.230)'. The importance of the derived four viewpoints is maintained at a similar level. In addition, looking at the detailed variables with the highest importance for each of the four perspectives, 'Best Practice', 'manufacturing data quality management regime, 'manufacturing data collection infrastructure', and 'manufacturing AI manpower level of solution providers' were found. Conclusion: For the sustainable growth of the domestic manufacturing AI ecosystem, it should be possible to develop and promote manufacturing AI policies in a balanced way by considering all four derived viewpoints. This paper is expected to be used as an effective guideline when developing policies for upgrading manufacturing through domestic manufacturing data and AI in the future.

A Study on Improvement of Level of Highway Maintenance Service Using Self-Organizing Map Neural Network (자기조직화 신경망을 이용한 고속도로 유지관리 서비스 등급 개선에 대한 연구)

  • Shin, Duksoon;Park, Sungbum
    • Journal of Information Technology Services
    • /
    • v.20 no.1
    • /
    • pp.81-92
    • /
    • 2021
  • As the degree of economic development of society increases, the maintenance issues on the existing social overhead capital becomes essential. Accordingly, the adaptation of the concept of Level of service in highway maintenance is indispensable. It is also crucial to manage and perform the service level such as road assets to provide universal services to users. In this regards, the purpose of this study is to improve the maintenance service rating model and to focus on the assessment items and weights among the improvements. Particularly, in determining weights, an Analytic Hierarchy Process (AHP) is performed based on the survey response results. After then, this study conducts unsupervised neural network models such as Self-Organizing Map (SOM) and Davies-Bouldin (DB) Index to divide proper sub-groups and determine priorities. This paper identifies similar cases by grouping the results of the responses based on the similarity of the survey responses. This can effectively support decision making in general situations where many evaluation factors need to be considered at once, resulting in reasonable policy decisions. It is the process of using advanced technology to find optimized management methods for maintenance.

A Study on the Decision Factors for AI-based SaMD Adoption Using Delphi Surveys and AHP Analysis (델파이 조사와 AHP 분석을 활용한 인공지능 기반 SaMD 도입 의사결정 요인에 관한 연구)

  • Byung-Oh Woo;Jay In Oh
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.111-129
    • /
    • 2023
  • With the diffusion of digital innovation, the adoption of innovative medical technologies based on artificial intelligence is increasing in the medical field. This is driving the launch and adoption of AI-based SaMD(Software as a Medical Device), but there is a lack of research on the factors that influence the adoption of SaMD by medical institutions. The purpose of this study is to identify key factors that influence medical institutions' decisions to adopt AI-based SaMDs, and to analyze the weights and priorities of these factors. For this purpose, we conducted Delphi surveys based on the results of literature studies on technology acceptance models in healthcare industry, medical AI and SaMD, and developed a research model by combining HOTE(Human, Organization, Technology and Environment) framework and HABIO(Holistic Approach {Business, Information, Organizational}) framework. Based on the research model with 5 main criteria and 22 sub-criteria, we conducted an AHP(Analytical Hierarchy Process) analysis among the experts from domestic medical institutions and SaMD providers to empirically analyze SaMD adoption factors. The results of this study showed that the priority of the main criteria for determining the adoption of AI-based SaMD was in the order of technical factors, economic factors, human factors, organizational factors, and environmental factors. The priority of sub-criteria was in the order of reliability, cost reduction, medical staff's acceptance, safety, top management's support, security, and licensing & regulatory levels. Specifically, technical factors such as reliability, safety, and security were found to be the most important factors for SaMD adoption. In addition, the comparisons and analyses of the weights and priorities of each group showed that the weights and priorities of SaMD adoption factors varied by type of institution, type of medical institution, and type of job in the medical institution.