본 연구는 뉴스 빅데이터 분석 서비스 빅카인즈(BIGKinds)를 활용하여 1991년부터 2020년까지 30년간의 86,611건의 뉴스기사를 통해 항만이슈변화를 분석하였다. 분석방법은 빅카인즈(BIGKinds)의 키워드분석, 워드클라우드, 관계도분석을 수행하였다. 지난 30년간의 이슈변화를 살펴본 분석결과를 정리하면 다음과 같다. 첫째, 1기(1991년~2000년)에서는 부산항, 인천항, 광양항 등 항만 자체적 측면에서 항만경쟁력을 강화하는데 초점이 맞춰졌다. 2기(2001년~2010년)에는 항만을 개별적으로 관리하는 노력에서 발전되어 항만을 보다 전문적이고 체계적으로 관리하기 위해 부산항만공사(2004년 설립), 인천항만공사(2005년 설립), 울산항만공사(2007년 설립) 등 항만공사를 중심으로 항만을 특화시키고 관리하고자 하는 움직임이 활발히 이루어졌다. 3기(2011년~2020년)에서는 미래형 항만을 위해 준비하는 기간으로 친환경·스마트항만이 주요 이슈였다. 항만에서 발생하는 미세먼지와 오염물질을 줄이려는 노력이 심화되었으며, 항만자동화 및 디지털화를 통해 스마트항만을 구축하려는 시도가 높아졌다. 마지막으로 2020년은 코로나19라는 전 세계의 예기치 못한 변수로 인해 항만분야에도 큰 타격을 준 한해였다. 좀 더 미시적으로 코로나19사태가 항만분야에 어떻게 영향을 미치는지를 살펴보기 위해 2019년과 2020년의 이슈변화를 살펴보았다. 코로나19 이후 항만산업을 포함한 해운업은 미래형 항만으로 발전시켜 나가는 흐름과 더불어 포스트코로나시대를 준비해야하는 어느 때보다 역동적인 변화가 나타나는 시기로 나타났다. 본 연구는 항만관련 뉴스기사를 중심으로 이슈변화의 시사점을 도출한 연구로서, 연구결과를 기반으로 향후 여러 국가의 항만이슈들을 비교 분석하고 항만의 경쟁력과 지속가능한 발전전략을 제시하는 등 심층적인 연구가 이루어진다면 항만연구분야에 학문적 성장이 한걸음 더 이루어질 것으로 보인다.
소비자의 니즈가 다양해지면서 데이터 마이닝과 고도화된 고객관계관리(CRM) 기법을 활용한 체계적인 마케팅 서비스를 제공하는 기업이 증가하고 있으며, KB국민카드는 고객의 결제 데이터 등을 활용하여 고객 개개인의 니즈를 충족시키고 소비자의 평생가치를 극대화하기 위한 전략을 강조하고 있다. 실시간으로 고객의 카드이용과 고객 행동, 위치 정보 등을 감지하여 진행하는 고효율 마케팅 운영시스템인 스마트 오퍼링 시스템을 운영하고 있으며, 다양한 앱 등과 결합하여 더욱 정교화된 서비스를 제공하고 있다. KB국민카드는 스마트 오퍼링 시스템의 성공과 지속적인 성장을 위해 고도화되고 있는 ICT 기술과 인재 확보를 위한 투자를 진행해야 하며, 장기적인 관점에서의 수익확보를 위한 전략을 확립하여 체계적인 진행이 필요하다. 특히, 프라이버시 침해와 개인정보 유출 등의 문제가 쟁점이 되는 현재 상황에서 고객 정보를 활용한 마케팅에 대한 고객의 인식을 긍정적으로 유도하고, 보안성을 강조하는 기업 이미지 형성을 위한 노력이 필요하다. 본 연구는 CRM 전략의 변화 과정을 통해 현재 카드사의 실시간 CRM 전략을 KB 국민카드의 빅데이터 활용전략과 마케팅 활동을 통해 확인하고자 한다.
본 연구에서는 서해안 해상기상타워 2기에서 관측된 수면변동자료를 이용하여 해양특성을 구분하는 주요 인자인 첨두주기 Tp와 평균주기 T02와 Tm-1, 0를 산정하고 이상자료의 비율, 상관관계 분석 및 최적 확률밀도함수를 추정하였다. 산정된 대표주기 중 첨두주기의 경우, 이상 자료의 비율은 각각의 지점에서 5.73 %, 0.67 %로 나타났으며, T02는 4.35%, 0.01%, Tm-1, 0는 2.82%, 0.03%로 나타났다. 한편, T02와 Tp 사이의 관계를 분석한 결과 각 지점별로 0.53, 0.63의 관계로 산정됐으며, Tm-1, 0와 Tp의 관계는 각각 1.15, 1.32로 나타났다. T02와 Tm-1, 0는 서로 1.18, 1.22의 관계를 보이고 있었다. 산정된 대표주기의 최적 확률밀도함수를 추정한 결과, Tp는 각각의 지점에서 'Lognormal', 'Normal' 분포를 따르고 있었으며, T02는 'Gamma', 'Normal' 분포, Tm-1, 0는 각각 'Log-normal', 'Normal' 분포가 우세한 것으로 나타났다. 이러한 결과는 서해안을 대상으로 수행되는 파랑 분석에 기초자료로 사용될 수 있을 것으로 판단된다.
경제성장과 산업 발전에 따라 반도체 제품부터 SMT 제품, 전기 배터리 제품에 이르기 까지 많은 전자통신 부품들의 제조과정에서 발생하는 철, 알루미늄, 플라스틱 등의 이물질로 인해 제품이 제대로 동작하지 않거나, 전기 배터리의 경우 화재를 발생하는 문제까지 심각한 문제로 이어질 가능성이 있다. 이러한 문제를 해결하기 위해 초음파나 X-ray를 이용한 비파괴 방법으로 제품 내부에 이물질이 있는지 판단하여 문제의 발생을 차단하고 있으나, X-ray 영상을 취득하여 이물질이 있는지 판정하는 데에도 여러 한계점이 존재한다. 특히. 크기가 작거나 밀도가 낮은 이물질들은 X-Ray장비로 촬영을 하여도 보이지 않는 문제점이 있고, 잡음 등으로 인해 이물들이 잘 안 보이는 경우가 있으며, 특히 높은 생산성을 가지기 위해서는 빠른 검사속도가 필요한데, 이 경우 X-ray 촬영시간이 짧아지게 되면 신호 대비 잡음비율(SNR)이 낮아지면서 이물 탐지 성능이 크게 저하되는 문제를 가진다. 따라서, 본 논문에서는 저화질로 인해 이물질을 탐지하기 어려운 한계를 극복하기 위한 5단계 방안을 제안한다. 첫번째로, Global 히스토그램 최적화를 통해 X-Ray영상의 대비를 향상시키고, 두 번째로 고주파 영역 신호의 구분력을 강화하기 위하여 Local contrast기법을 적용하며, 세 번째로 Edge 선명도 향상을 위해 Unsharp masking을 통해 경계선을 강화하여 객체가 잘 구분되도록 한다, 네 번째로, 잡음 제거 및 영상향상을 위해 Resdual Dense Block(RDB)의 초고해상화 방법을 제안하며, 마지막으로 Yolov5 알고리즘을 이용하여 이물질을 학습한 후 탐지한다. 본 연구에서 제안하는 방식을 이용하여 실험한 결과, 저밀도 영상 대비 정밀도 등의 평가기준에서 10%이상의 성능이 향상된다.
최근 빅데이터 분석은 기업과 전문가뿐만 아니라 개인이나 비전문가들도 큰 관심을 갖는 분야로 발전하였다. 그에 따라 현재 공개된 데이터 또는 직접 수집한 이터를 분석하여 마케팅, 사회적 문제 해결 등에 활용되고 있다. 국내에서도 다양한 기업들과 개인이 빅데이터 분석에 도전하고 있지만 빅데이터 공개의 제한과 수집의 어려움으로 분석 초기 단계에서부터 어려움을 겪고 있다. 본 논문에서는 빅데이터 공유를 방해하는 개인정보, 빅트래픽 등의 요소들에 대한 기존 연구와 사례들을 살펴보고 정책기반의 해결책이 아닌 시스템을 통해서 빅데이터 공유 제한 문제를 해결 할 수 있는 클라이언트-서버 모델을 이용해 빅데이터를 공개 및 사용 할 때 발생하는 문제점들을 해소하고 공유와 분석 활성화를 도울 수 있는 방안에 대해 기술한다. 클라이언트-서버 모델은 SPARK를 활용해 빠른 분석과 사용자 요청을 처리하며 Server Agent와 Client Agent로 구분해 데이터 제공자가 데이터를 공개할 때 서버 측의 프로세스와 데이터 사용자가 데이터를 사용하기 위한 클라이언트 측의 프로세스로 구분하여 설명한다. 특히, 빅데이터 공유, 분산 빅데이터 처리, 빅트래픽 문제에 초점을 맞추어 클라이언트-서버 모델의 세부 모듈을 구성하고 각 모듈의 설계 방법에 대해 제시하고자 한다. 클라이언트-서버 모델을 통해서 빅데이터 공유문제를 해결하고 자유로운 공유 환경을 구성하여 안전하게 빅데이터를 공개하고 쉽게 빅데이터를 찾는 이상적인 공유 서비스를 제공할 수 있다.
중국 화장품 전체 교역중 약 67% 정도가 전자상거래로 이루어지고 있는데 특히 한국 화장품인 K-Beauty 제품의 인기가 높다. 기존 연구에 의하면 화장품 같은 소비재의 경우 소비자의 80%는 제품 구매 전 제품정보를 인터넷으로 검색하며 구전정보에 영향을 받는다. 대부분의 중국 소비자들은 화장품과 관련된 정보를 주요 SNS에 다른 소비자들이 올린 댓글을 통해 획득하며 최근에는 뷰티 관련 동영상 채널 정보를 이용하기도 한다. 기존의 온라인 구전 관련 연구는 대부분 Facebook, Twitter, 블로그 등의 매체 자체가 중심이었다. 본 연구에서는 온라인 구전정보의 전달 형태와 정보의 형태를 고려하여 정보유형을 동영상과 사진 및 텍스트로 나누어 연구하고자 한다. 중국의 SNS대표 플랫폼인 SINA Weibo와 동영상 플랫폼 Meipai의 비정형 데이터를 분석하고 온라인 구전정보를 양과 방향성으로 나누어 K-Beauty브랜드 매출액에 미치는 영향을 분석하고자 한다. Meipai에서는 총 약 33만개의 데이터를 수집하였고 SINA Weibo에서는 총 약 11만개의 데이터를 수집하여 화장품의 기본 속성도 고려하여 분석하였다. 본 연구의 의의는 온라인 매출은 K-Beauty화장품에 대해서도 구전에 영향을 받는다는 것을 기본적으로 입증함과 동시에 특히 정보 유형에 대한 구분을 시도 했다는 것이다. 두가지 매체 모두 기존 연구와 같이 양이 매출에 영향을 미치고 있으나 매체풍부성으로 인해 텍스트보다 동영상이 정보를 더 주고 영향이 크다는 것을 입증하였다. 또한, 정보 방향성 측면에서는 색조화장품의 경우 부정 댓글의 영향이 크게 나타났다. 실무적으로는 화장품 판매 전략 및 광고 전략에 기초 및 색조 화장품을 구분하여 중국 K-Beauty화장품 매출증대를 위한 마케팅전략을 구사하는데 도움이 될 것으로 기대된다.
최근 독감 예측이나 당선인 예측, 구매 패턴, 투자 등 다방면에서 웹검색 트래픽 정보. 소셜 네트워크 내용 등 거대한 데이터를 통해 사회적 현상, 소비 패턴을 분석하는 시도가 이전보다 늘어났다. 구글, 네이버, 바이두 등 인터넷 포털 업체들의 웹검색 트래픽 정보 공개 서비스와 함께 웹검색 트래픽 정보를 활용하여 소비자나 사용자와 관련된 연구가 실시되기 시작했다. 웹검색 트래픽 정보를 활용한 사회 현상, 소비 패턴 분석을 연구는 많이 수행되었으나, 그에 비해서 도출된 여행 수요 모델을 토대로 의사결정을 위한 실질적 대책 수립으로 이어지는 연구는 많이 진행되지 않은 실정이다. 관광산업은 상대적으로 많은 고용을 가능하게 하고 외자를 유치하는 등 고부가가치를 창출하여 경제 전체에 선순환 효과를 일으키는 중요한 산업이다. 그 중에서도 국내 입국외래객중 수년간 2위와의 큰 차이로 1위를 차지해왔던 중국 국적의 관광객 '유커' 및 그들이 지출하는 1인당 평균 관광 수지는 한국 경제에 매우 중요한 한 부분이다. 관광 수요의 예측은 효율적인 자원 배분과 합리적인 의사 결정에 있어서 공공부문 및 민간부문 모두 중요하다. 적절한 관광 수요 예측을 통해서 한정된 자원을 더욱 효과적으로 활용하여 더욱 많은 부가가치를 창출하기 위한 것이다. 본 연구는 중국인 인바운드를 예측하는 방법에 있어, 이전보다 더 최신의 트렌드를 즉각적으로 반영하고 개인들의 집합의 관심도가 포함되어 예측 성능이 개선된 방법을 제안한다. 해외여행은 고관여 소비이기 때문에 잠재적 여행객들이 입국하기 전 웹검색을 통해 적극적으로 자신의 여정과 관련된 정보를 취득하기 위한 활동을 한다. 따라서 웹검색 트래픽 수치가 중국인 여행객의 관심정도를 대표할 수 있다고 보았다. 중국인 여행객들이 한국 여행을 준비하는 단계에서 검색할만한 키워드를 선정해 실제 중국인 입국자 수와 상관관계가 있음을 검증하고자 하였다. 중국 웹검색 엔진 시장에서 80%의 점유율을 가지는 중국 최대 웹검색 엔진 '바이두'에서 공개한 웹검색 데이터를 활용하여 그 관심 정도를 대표할 수 있을 것이라 추정했다. 수집에 필요한 키워드의 선정 단계에서는 잠재적 여행객이 여정을 계획하고 구체화하는 단계에서 일반적으로 검색하게 되는 키워드 후보군을 선정하였다. 키워드의 선정에는 중국 국적의 잠재적 여행객 표본과의 인터뷰를 거쳤다. 트래픽 대소 관계 확인 결과에 따라서 최종 선정된 키워드들을 한국여행이라는 주제와 직접적인 연관을 가지는 키워드부터, 간접적인 연관을 가지는 키워드까지 총 세 가지 레벨의 카테고리로 분류하였다. 분류된 카테고리 내의 키워드들은 바이두'가 제공하는 웹검색 트래픽 데이터 제공 서비스 '바이두 인덱스'를 통해 웹검색 트래픽 데이터를 수집했다. 공개된 데이터 페이지 특성을 고려한 웹 크롤러를 직접 설계하여 웹검색 트래픽 데이터를 수집하였고, 분리되어 수집된 변수에는 필요한 변수 변환 과정을 수행했다. 자동화 수집된 웹검색 트래픽 정보들을 투입하여 중국 여행 인바운드에 대한 유의한 영향 관계를 확인하여 중국인 여행객의 한국 인바운드 여행 수요를 예측하는 모형을 개발하고자 하였다. 정책 의사결정 및 관광 경영 의사결정 같은 실무적 활용을 고려하여 각 변수의 영향력을 정량적으로 설명할 수 있고 설득이 명료한 방법인 다중회귀분석방법을 적용해 선형 식을 도출하였다. 수집된 웹검색 트래픽 데이터를 기존 검증된 모형 독립변인들에 추가적으로 투입함으로써 전통적인 독립변인으로만 구성된 연구 모형과 비교하여 가장 뛰어난 성능을 보이는 모형을 확인하였다. 본 연구에서 검증하려는, 웹검색 트래픽으로 대표되는 독립변인을 투입한 최종 도출된 모형을 통해 중국인 관광 수요를 예측할 때 유의한 영향을 끼치는 웹검색 트래픽 변수를 확인할 수 있다. 최적 모형 설명력을 가지는 모형을 기반으로 최종 회귀 식을 만들었고 이를 '유커마이닝' 시스템 내부에 도입하였다. 데이터 분석에서 더 나아가 도출된 모형을 직관적으로 시각화하고, 웹검색 트래픽 정보를 활용하여 도출할 수 있는 인사이트를 함께 보여주는 데이터 분석 기반의 '유커마이닝' 솔루션의 시스템 알고리즘과 UX를 제안하였다. 본 연구가 제안하는 모형과 시스템은 관광수요 예측모형 분야에서 웹검색 트래픽 데이터라는 정보 탐색을 하는 과정에 놓인 개인들의 인터랙티브하고 즉각적인 변수를 활용한 새로운 시도이다. 실무적으로 관련 정책결정자나 관광사, 항공사 등이 활용 가능한 실제적인 가치를 가지고, 정책적으로도 효과적인 관광 정책 수립에 활용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.