• 제목/요약/키워드: Bigdata

검색결과 647건 처리시간 0.027초

뉴스 빅데이터를 활용한 항만이슈 변화연구 : 1991~2020 (Study of major issues and trends facing ports, using big data news: From 1991 to 2020)

  • 윤희영
    • 한국항만경제학회지
    • /
    • 제37권1호
    • /
    • pp.159-178
    • /
    • 2021
  • 본 연구는 뉴스 빅데이터 분석 서비스 빅카인즈(BIGKinds)를 활용하여 1991년부터 2020년까지 30년간의 86,611건의 뉴스기사를 통해 항만이슈변화를 분석하였다. 분석방법은 빅카인즈(BIGKinds)의 키워드분석, 워드클라우드, 관계도분석을 수행하였다. 지난 30년간의 이슈변화를 살펴본 분석결과를 정리하면 다음과 같다. 첫째, 1기(1991년~2000년)에서는 부산항, 인천항, 광양항 등 항만 자체적 측면에서 항만경쟁력을 강화하는데 초점이 맞춰졌다. 2기(2001년~2010년)에는 항만을 개별적으로 관리하는 노력에서 발전되어 항만을 보다 전문적이고 체계적으로 관리하기 위해 부산항만공사(2004년 설립), 인천항만공사(2005년 설립), 울산항만공사(2007년 설립) 등 항만공사를 중심으로 항만을 특화시키고 관리하고자 하는 움직임이 활발히 이루어졌다. 3기(2011년~2020년)에서는 미래형 항만을 위해 준비하는 기간으로 친환경·스마트항만이 주요 이슈였다. 항만에서 발생하는 미세먼지와 오염물질을 줄이려는 노력이 심화되었으며, 항만자동화 및 디지털화를 통해 스마트항만을 구축하려는 시도가 높아졌다. 마지막으로 2020년은 코로나19라는 전 세계의 예기치 못한 변수로 인해 항만분야에도 큰 타격을 준 한해였다. 좀 더 미시적으로 코로나19사태가 항만분야에 어떻게 영향을 미치는지를 살펴보기 위해 2019년과 2020년의 이슈변화를 살펴보았다. 코로나19 이후 항만산업을 포함한 해운업은 미래형 항만으로 발전시켜 나가는 흐름과 더불어 포스트코로나시대를 준비해야하는 어느 때보다 역동적인 변화가 나타나는 시기로 나타났다. 본 연구는 항만관련 뉴스기사를 중심으로 이슈변화의 시사점을 도출한 연구로서, 연구결과를 기반으로 향후 여러 국가의 항만이슈들을 비교 분석하고 항만의 경쟁력과 지속가능한 발전전략을 제시하는 등 심층적인 연구가 이루어진다면 항만연구분야에 학문적 성장이 한걸음 더 이루어질 것으로 보인다.

KB국민카드의 빅데이터를 활용한 실시간 CRM 전략: 스마트 오퍼링 시스템 (Real-time CRM Strategy of Big Data and Smart Offering System: KB Kookmin Card Case)

  • 최재원;손봉진;임현아
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.1-23
    • /
    • 2019
  • 소비자의 니즈가 다양해지면서 데이터 마이닝과 고도화된 고객관계관리(CRM) 기법을 활용한 체계적인 마케팅 서비스를 제공하는 기업이 증가하고 있으며, KB국민카드는 고객의 결제 데이터 등을 활용하여 고객 개개인의 니즈를 충족시키고 소비자의 평생가치를 극대화하기 위한 전략을 강조하고 있다. 실시간으로 고객의 카드이용과 고객 행동, 위치 정보 등을 감지하여 진행하는 고효율 마케팅 운영시스템인 스마트 오퍼링 시스템을 운영하고 있으며, 다양한 앱 등과 결합하여 더욱 정교화된 서비스를 제공하고 있다. KB국민카드는 스마트 오퍼링 시스템의 성공과 지속적인 성장을 위해 고도화되고 있는 ICT 기술과 인재 확보를 위한 투자를 진행해야 하며, 장기적인 관점에서의 수익확보를 위한 전략을 확립하여 체계적인 진행이 필요하다. 특히, 프라이버시 침해와 개인정보 유출 등의 문제가 쟁점이 되는 현재 상황에서 고객 정보를 활용한 마케팅에 대한 고객의 인식을 긍정적으로 유도하고, 보안성을 강조하는 기업 이미지 형성을 위한 노력이 필요하다. 본 연구는 CRM 전략의 변화 과정을 통해 현재 카드사의 실시간 CRM 전략을 KB 국민카드의 빅데이터 활용전략과 마케팅 활동을 통해 확인하고자 한다.

국내 서해안 파랑 관측자료를 이용한 대표주기 산정 및 최적 확률밀도함수 추정 (Estimation of Representative Wave Period and Optimal Probability Density Function Using Wave Observed Data around Korean Western Coast)

  • 이욱재;조홍연;박진호;고동휘
    • 한국해안·해양공학회논문집
    • /
    • 제35권6호
    • /
    • pp.146-154
    • /
    • 2023
  • 본 연구에서는 서해안 해상기상타워 2기에서 관측된 수면변동자료를 이용하여 해양특성을 구분하는 주요 인자인 첨두주기 Tp와 평균주기 T02와 Tm-1, 0를 산정하고 이상자료의 비율, 상관관계 분석 및 최적 확률밀도함수를 추정하였다. 산정된 대표주기 중 첨두주기의 경우, 이상 자료의 비율은 각각의 지점에서 5.73 %, 0.67 %로 나타났으며, T02는 4.35%, 0.01%, Tm-1, 0는 2.82%, 0.03%로 나타났다. 한편, T02와 Tp 사이의 관계를 분석한 결과 각 지점별로 0.53, 0.63의 관계로 산정됐으며, Tm-1, 0와 Tp의 관계는 각각 1.15, 1.32로 나타났다. T02와 Tm-1, 0는 서로 1.18, 1.22의 관계를 보이고 있었다. 산정된 대표주기의 최적 확률밀도함수를 추정한 결과, Tp는 각각의 지점에서 'Lognormal', 'Normal' 분포를 따르고 있었으며, T02는 'Gamma', 'Normal' 분포, Tm-1, 0는 각각 'Log-normal', 'Normal' 분포가 우세한 것으로 나타났다. 이러한 결과는 서해안을 대상으로 수행되는 파랑 분석에 기초자료로 사용될 수 있을 것으로 판단된다.

이물 객체 탐지 성능 개선을 위한 딥러닝 네트워크 기반 저품질 영상 개선 기법 개발 (Development of deep learning network based low-quality image enhancement techniques for improving foreign object detection performance)

  • 엄기열;민병석
    • 인터넷정보학회논문지
    • /
    • 제25권1호
    • /
    • pp.99-107
    • /
    • 2024
  • 경제성장과 산업 발전에 따라 반도체 제품부터 SMT 제품, 전기 배터리 제품에 이르기 까지 많은 전자통신 부품들의 제조과정에서 발생하는 철, 알루미늄, 플라스틱 등의 이물질로 인해 제품이 제대로 동작하지 않거나, 전기 배터리의 경우 화재를 발생하는 문제까지 심각한 문제로 이어질 가능성이 있다. 이러한 문제를 해결하기 위해 초음파나 X-ray를 이용한 비파괴 방법으로 제품 내부에 이물질이 있는지 판단하여 문제의 발생을 차단하고 있으나, X-ray 영상을 취득하여 이물질이 있는지 판정하는 데에도 여러 한계점이 존재한다. 특히. 크기가 작거나 밀도가 낮은 이물질들은 X-Ray장비로 촬영을 하여도 보이지 않는 문제점이 있고, 잡음 등으로 인해 이물들이 잘 안 보이는 경우가 있으며, 특히 높은 생산성을 가지기 위해서는 빠른 검사속도가 필요한데, 이 경우 X-ray 촬영시간이 짧아지게 되면 신호 대비 잡음비율(SNR)이 낮아지면서 이물 탐지 성능이 크게 저하되는 문제를 가진다. 따라서, 본 논문에서는 저화질로 인해 이물질을 탐지하기 어려운 한계를 극복하기 위한 5단계 방안을 제안한다. 첫번째로, Global 히스토그램 최적화를 통해 X-Ray영상의 대비를 향상시키고, 두 번째로 고주파 영역 신호의 구분력을 강화하기 위하여 Local contrast기법을 적용하며, 세 번째로 Edge 선명도 향상을 위해 Unsharp masking을 통해 경계선을 강화하여 객체가 잘 구분되도록 한다, 네 번째로, 잡음 제거 및 영상향상을 위해 Resdual Dense Block(RDB)의 초고해상화 방법을 제안하며, 마지막으로 Yolov5 알고리즘을 이용하여 이물질을 학습한 후 탐지한다. 본 연구에서 제안하는 방식을 이용하여 실험한 결과, 저밀도 영상 대비 정밀도 등의 평가기준에서 10%이상의 성능이 향상된다.

빅데이터의 효과적인 처리 및 활용을 위한 클라이언트-서버 모델 설계 (Design of Client-Server Model For Effective Processing and Utilization of Bigdata)

  • 박대서;김화종
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.109-122
    • /
    • 2016
  • 최근 빅데이터 분석은 기업과 전문가뿐만 아니라 개인이나 비전문가들도 큰 관심을 갖는 분야로 발전하였다. 그에 따라 현재 공개된 데이터 또는 직접 수집한 이터를 분석하여 마케팅, 사회적 문제 해결 등에 활용되고 있다. 국내에서도 다양한 기업들과 개인이 빅데이터 분석에 도전하고 있지만 빅데이터 공개의 제한과 수집의 어려움으로 분석 초기 단계에서부터 어려움을 겪고 있다. 본 논문에서는 빅데이터 공유를 방해하는 개인정보, 빅트래픽 등의 요소들에 대한 기존 연구와 사례들을 살펴보고 정책기반의 해결책이 아닌 시스템을 통해서 빅데이터 공유 제한 문제를 해결 할 수 있는 클라이언트-서버 모델을 이용해 빅데이터를 공개 및 사용 할 때 발생하는 문제점들을 해소하고 공유와 분석 활성화를 도울 수 있는 방안에 대해 기술한다. 클라이언트-서버 모델은 SPARK를 활용해 빠른 분석과 사용자 요청을 처리하며 Server Agent와 Client Agent로 구분해 데이터 제공자가 데이터를 공개할 때 서버 측의 프로세스와 데이터 사용자가 데이터를 사용하기 위한 클라이언트 측의 프로세스로 구분하여 설명한다. 특히, 빅데이터 공유, 분산 빅데이터 처리, 빅트래픽 문제에 초점을 맞추어 클라이언트-서버 모델의 세부 모듈을 구성하고 각 모듈의 설계 방법에 대해 제시하고자 한다. 클라이언트-서버 모델을 통해서 빅데이터 공유문제를 해결하고 자유로운 공유 환경을 구성하여 안전하게 빅데이터를 공개하고 쉽게 빅데이터를 찾는 이상적인 공유 서비스를 제공할 수 있다.

K-Beauty 구전효과가 온라인 매출액에 미치는 영향: 중국 SINA Weibo와 Meipai 중심으로 (Word-of-Mouth Effect for Online Sales of K-Beauty Products: Centered on China SINA Weibo and Meipai)

  • 류미나;임규건
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.197-218
    • /
    • 2019
  • 중국 화장품 전체 교역중 약 67% 정도가 전자상거래로 이루어지고 있는데 특히 한국 화장품인 K-Beauty 제품의 인기가 높다. 기존 연구에 의하면 화장품 같은 소비재의 경우 소비자의 80%는 제품 구매 전 제품정보를 인터넷으로 검색하며 구전정보에 영향을 받는다. 대부분의 중국 소비자들은 화장품과 관련된 정보를 주요 SNS에 다른 소비자들이 올린 댓글을 통해 획득하며 최근에는 뷰티 관련 동영상 채널 정보를 이용하기도 한다. 기존의 온라인 구전 관련 연구는 대부분 Facebook, Twitter, 블로그 등의 매체 자체가 중심이었다. 본 연구에서는 온라인 구전정보의 전달 형태와 정보의 형태를 고려하여 정보유형을 동영상과 사진 및 텍스트로 나누어 연구하고자 한다. 중국의 SNS대표 플랫폼인 SINA Weibo와 동영상 플랫폼 Meipai의 비정형 데이터를 분석하고 온라인 구전정보를 양과 방향성으로 나누어 K-Beauty브랜드 매출액에 미치는 영향을 분석하고자 한다. Meipai에서는 총 약 33만개의 데이터를 수집하였고 SINA Weibo에서는 총 약 11만개의 데이터를 수집하여 화장품의 기본 속성도 고려하여 분석하였다. 본 연구의 의의는 온라인 매출은 K-Beauty화장품에 대해서도 구전에 영향을 받는다는 것을 기본적으로 입증함과 동시에 특히 정보 유형에 대한 구분을 시도 했다는 것이다. 두가지 매체 모두 기존 연구와 같이 양이 매출에 영향을 미치고 있으나 매체풍부성으로 인해 텍스트보다 동영상이 정보를 더 주고 영향이 크다는 것을 입증하였다. 또한, 정보 방향성 측면에서는 색조화장품의 경우 부정 댓글의 영향이 크게 나타났다. 실무적으로는 화장품 판매 전략 및 광고 전략에 기초 및 색조 화장품을 구분하여 중국 K-Beauty화장품 매출증대를 위한 마케팅전략을 구사하는데 도움이 될 것으로 기대된다.

웹검색 트래픽 정보를 활용한 유커 인바운드 여행 수요 예측 모형 및 유커마이닝 시스템 개발 (Development of Yóukè Mining System with Yóukè's Travel Demand and Insight Based on Web Search Traffic Information)

  • 최유지;박도형
    • 지능정보연구
    • /
    • 제23권3호
    • /
    • pp.155-175
    • /
    • 2017
  • 최근 독감 예측이나 당선인 예측, 구매 패턴, 투자 등 다방면에서 웹검색 트래픽 정보. 소셜 네트워크 내용 등 거대한 데이터를 통해 사회적 현상, 소비 패턴을 분석하는 시도가 이전보다 늘어났다. 구글, 네이버, 바이두 등 인터넷 포털 업체들의 웹검색 트래픽 정보 공개 서비스와 함께 웹검색 트래픽 정보를 활용하여 소비자나 사용자와 관련된 연구가 실시되기 시작했다. 웹검색 트래픽 정보를 활용한 사회 현상, 소비 패턴 분석을 연구는 많이 수행되었으나, 그에 비해서 도출된 여행 수요 모델을 토대로 의사결정을 위한 실질적 대책 수립으로 이어지는 연구는 많이 진행되지 않은 실정이다. 관광산업은 상대적으로 많은 고용을 가능하게 하고 외자를 유치하는 등 고부가가치를 창출하여 경제 전체에 선순환 효과를 일으키는 중요한 산업이다. 그 중에서도 국내 입국외래객중 수년간 2위와의 큰 차이로 1위를 차지해왔던 중국 국적의 관광객 '유커' 및 그들이 지출하는 1인당 평균 관광 수지는 한국 경제에 매우 중요한 한 부분이다. 관광 수요의 예측은 효율적인 자원 배분과 합리적인 의사 결정에 있어서 공공부문 및 민간부문 모두 중요하다. 적절한 관광 수요 예측을 통해서 한정된 자원을 더욱 효과적으로 활용하여 더욱 많은 부가가치를 창출하기 위한 것이다. 본 연구는 중국인 인바운드를 예측하는 방법에 있어, 이전보다 더 최신의 트렌드를 즉각적으로 반영하고 개인들의 집합의 관심도가 포함되어 예측 성능이 개선된 방법을 제안한다. 해외여행은 고관여 소비이기 때문에 잠재적 여행객들이 입국하기 전 웹검색을 통해 적극적으로 자신의 여정과 관련된 정보를 취득하기 위한 활동을 한다. 따라서 웹검색 트래픽 수치가 중국인 여행객의 관심정도를 대표할 수 있다고 보았다. 중국인 여행객들이 한국 여행을 준비하는 단계에서 검색할만한 키워드를 선정해 실제 중국인 입국자 수와 상관관계가 있음을 검증하고자 하였다. 중국 웹검색 엔진 시장에서 80%의 점유율을 가지는 중국 최대 웹검색 엔진 '바이두'에서 공개한 웹검색 데이터를 활용하여 그 관심 정도를 대표할 수 있을 것이라 추정했다. 수집에 필요한 키워드의 선정 단계에서는 잠재적 여행객이 여정을 계획하고 구체화하는 단계에서 일반적으로 검색하게 되는 키워드 후보군을 선정하였다. 키워드의 선정에는 중국 국적의 잠재적 여행객 표본과의 인터뷰를 거쳤다. 트래픽 대소 관계 확인 결과에 따라서 최종 선정된 키워드들을 한국여행이라는 주제와 직접적인 연관을 가지는 키워드부터, 간접적인 연관을 가지는 키워드까지 총 세 가지 레벨의 카테고리로 분류하였다. 분류된 카테고리 내의 키워드들은 바이두'가 제공하는 웹검색 트래픽 데이터 제공 서비스 '바이두 인덱스'를 통해 웹검색 트래픽 데이터를 수집했다. 공개된 데이터 페이지 특성을 고려한 웹 크롤러를 직접 설계하여 웹검색 트래픽 데이터를 수집하였고, 분리되어 수집된 변수에는 필요한 변수 변환 과정을 수행했다. 자동화 수집된 웹검색 트래픽 정보들을 투입하여 중국 여행 인바운드에 대한 유의한 영향 관계를 확인하여 중국인 여행객의 한국 인바운드 여행 수요를 예측하는 모형을 개발하고자 하였다. 정책 의사결정 및 관광 경영 의사결정 같은 실무적 활용을 고려하여 각 변수의 영향력을 정량적으로 설명할 수 있고 설득이 명료한 방법인 다중회귀분석방법을 적용해 선형 식을 도출하였다. 수집된 웹검색 트래픽 데이터를 기존 검증된 모형 독립변인들에 추가적으로 투입함으로써 전통적인 독립변인으로만 구성된 연구 모형과 비교하여 가장 뛰어난 성능을 보이는 모형을 확인하였다. 본 연구에서 검증하려는, 웹검색 트래픽으로 대표되는 독립변인을 투입한 최종 도출된 모형을 통해 중국인 관광 수요를 예측할 때 유의한 영향을 끼치는 웹검색 트래픽 변수를 확인할 수 있다. 최적 모형 설명력을 가지는 모형을 기반으로 최종 회귀 식을 만들었고 이를 '유커마이닝' 시스템 내부에 도입하였다. 데이터 분석에서 더 나아가 도출된 모형을 직관적으로 시각화하고, 웹검색 트래픽 정보를 활용하여 도출할 수 있는 인사이트를 함께 보여주는 데이터 분석 기반의 '유커마이닝' 솔루션의 시스템 알고리즘과 UX를 제안하였다. 본 연구가 제안하는 모형과 시스템은 관광수요 예측모형 분야에서 웹검색 트래픽 데이터라는 정보 탐색을 하는 과정에 놓인 개인들의 인터랙티브하고 즉각적인 변수를 활용한 새로운 시도이다. 실무적으로 관련 정책결정자나 관광사, 항공사 등이 활용 가능한 실제적인 가치를 가지고, 정책적으로도 효과적인 관광 정책 수립에 활용될 수 있다.