• Title/Summary/Keyword: BigData Platform

Search Result 516, Processing Time 0.024 seconds

Reference Model for the Service of Smart City Platform through Case Study (사례 연구를 통한 스마트 시티 플랫폼의 서비스를 위한 참조 모델)

  • Kim, Young Soo;Mun, Hyung-Jin
    • Journal of Digital Convergence
    • /
    • v.19 no.8
    • /
    • pp.241-247
    • /
    • 2021
  • As a way to solve the side effects of urban development, a smart city with information and communication technology converges in the city is being built. For this, a smart city platform should support the development and integration of smart city services. Therefore, the underlying technology and the functional and non-functional requirements that the smart platform must support were analyzed. As a result of this, we classified the Internet of Things, cloud computing, big data and cyber-physical systems into four categories as the underlying technologies supported by the smart city platform, and derived the functional and non-functional requirements that can be implemented and the reference model of the smart city platform. The reference model of the smart city platform is used for decision-making on investment in infrastructure technology and the development scope of services according to functional or non-functional requirements to solve specific city problems for city managers. It provides platform developers with guidelines to identify and determine the functional and non-functional requirements and implementation technologies of software platforms for building smart cities.

Research-platform Design for the Korean Smart Greenhouse Based on Cloud Computing (클라우드 기반 한국형 스마트 온실 연구 플랫폼 설계 방안)

  • Baek, Jeong-Hyun;Heo, Jeong-Wook;Kim, Hyun-Hwan;Hong, Youngsin;Lee, Jae-Su
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • This study was performed to review the domestic and international smart farm service model based on the convergence of agriculture and information & communication technology and derived various factors needed to improve the Korean smart greenhouse. Studies on modelling of crop growth environment in domestic smart farms were limited. And it took a lot of time to build research infrastructure. The cloud-based research platform as an alternative is needed. This platform can provide an infrastructure for comprehensive data storage and analysis as it manages the growth model of cloud-based integrated data, growth environment model, actuators control model, and farm management as well as knowledge-based expert systems and farm dashboard. Therefore, the cloud-based research platform can be applied as to quantify the relationships among various factors, such as the growth environment of crops, productivity, and actuators control. In addition, it will enable researchers to analyze quantitatively the growth environment model of crops, plants, and growth by utilizing big data, machine learning, and artificial intelligences.

Artificial Intelligence-based Security Control Construction and Countermeasures (인공지능기반 보안관제 구축 및 대응 방안)

  • Hong, Jun-Hyeok;Lee, Byoung Yup
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.531-540
    • /
    • 2021
  • As cyber attacks and crimes increase exponentially and hacking attacks become more intelligent and advanced, hacking attack methods and routes are evolving unpredictably and in real time. In order to reinforce the enemy's responsiveness, this study aims to propose a method for developing an artificial intelligence-based security control platform by building a next-generation security system using artificial intelligence to respond by self-learning, monitoring abnormal signs and blocking attacks.The artificial intelligence-based security control platform should be developed as the basis for data collection, data analysis, next-generation security system operation, and security system management. Big data base and control system, data collection step through external threat information, data analysis step of pre-processing and formalizing the collected data to perform positive/false detection and abnormal behavior analysis through deep learning-based algorithm, and analyzed data Through the operation of a security system of prevention, control, response, analysis, and organic circulation structure, the next generation security system to increase the scope and speed of handling new threats and to reinforce the identification of normal and abnormal behaviors, and management of the security threat response system, Harmful IP management, detection policy management, security business legal system management. Through this, we are trying to find a way to comprehensively analyze vast amounts of data and to respond preemptively in a short time.

Performance Evaluation of Medical Big Data Analysis based on RHadoop (RHadoop 기반 보건의료 빅데이터 분석의 성능 평가)

  • Ryu, Woo-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.207-212
    • /
    • 2018
  • As a data analysis tool which is becoming popular in the Big Data era, R is rapidly expanding its user range by providing powerful statistical analysis and data visualization functions. Major advantage of R is its functional scalability based on open source, but its scale scalability is limited, resulting in performance degrades in large data processing. RHadoop, one of the extension packages to complement it, can improve data analysis performance as it supports Hadoop platform-based distributed processing of programs written in R. In this paper, we evaluate the validity of RHadoop by evaluating the performance improvement of RHadoop in real medical big data analysis. Performance evaluation of the analysis of the medical history information, which is provided by National Health Insurance Service, using R and RHadoop shows that RHadoop cluster composed of 8 data nodes can improve performance up to 8 times compared with R.

Evaluation of Collaborative Filtering Methods for Developing Online Music Contents Recommendation System (온라인 음악 콘텐츠 추천 시스템 구현을 위한 협업 필터링 기법들의 비교 평가)

  • Yoo, Youngseok;Kim, Jiyeon;Sohn, Bangyong;Jung, Jongjin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1083-1091
    • /
    • 2017
  • As big data technologies have been developed and massive data have exploded from users through various channels, CEO of global IT enterprise mentioned core importance of data in next generation business. Therefore various machine learning technologies have been necessary to apply data driven services but especially recommendation has been core technique in viewpoint of directly providing summarized information or exact choice of items to users in information flooding environment. Recently evolved recommendation techniques have been proposed by many researchers and most of service companies with big data tried to apply refined recommendation method on their online business. For example, Amazon used item to item collaborative filtering method on its sales distribution platform. In this paper, we develop a commercial web service for suggesting music contents and implement three representative collaborative filtering methods on the service. We also produce recommendation lists with three methods based on real world sample data and evaluate the usefulness of them by comparison among the produced result. This study is meaningful in terms of suggesting the right direction and practicality when companies and developers want to develop web services by applying big data based recommendation techniques in practical environment.

A Research on Difference Between Consumer Perception of Slow Fashion and Consumption Behavior of Fast Fashion: Application of Topic Modelling with Big Data

  • YANG, Oh-Suk;WOO, Young-Mok;YANG, Yae-Rim
    • The Journal of Economics, Marketing and Management
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • Purpose: The article deals with the proposition that consumers' fashion consumption behavior will still follow the consumption behavior of fast fashion, despite recognizing the importance of slow fashion. Research design, data and methodology: The research model to verify this proposition is topic modelling with big data including unstructured textual data. we combined 5,506 news articles posted on Naver news search platform during the 2003-2019 period about fast fashion and slow fashion, high-frequency words have been derived, and topics have been found using LDA model. Based on these, we examined consumers' perception and consumption behavior on slow fashion through the analysis of Topic Network. Results: (1) Looking at the status of annual article collection, consumers' interest in slow fashion mainly began in 2005 and showed a steady increase up to 2019. (2) Term Frequency analysis showed that the keywords for slow fashion are the lowest, with consumers' consumption patterns continuing around 'brand.' (3) Each topic's weight in articles showed that 'social value' - which includes slow fashion - ranked sixth among the 9 topics, low linkage with other topics. (4) Lastly, 'brand' and 'fashion trend' were key topics, and the topic 'social value' accounted for a low proportion. Conclusion: Slow fashion was not a considerable factor of consumption behavior. Consumption patterns in fashion sector are still dominated by general consumption patterns centered on brands and fast fashion.

Big Data Platform for Learning in Cloud Computing Environment (클라우드 컴퓨팅 환경에서의 학습용 빅 데이터 플랫폼 설계)

  • Kim, Jun Heon
    • Proceedings of The KACE
    • /
    • 2017.08a
    • /
    • pp.63-64
    • /
    • 2017
  • 정보 기술의 끊임없는 발전에 따라 광범위한 분야에서 방대한 양의 데이터가 발생하게 되면서 이를 처리하기 위한 빅 데이터에 대한 연구 및 교육이 활발히 진행되고 있다. 이를 위하여 데이터 분석 및 처리를 위한 고성능의 서버 및 분산 처리를 위한 다수의 컴퓨터가 필요하며 이는, 개인 혹은 저사양의 수업 환경에서 빅 데이터를 학습하는 데에 어려움을 겪게 한다. 때문에 가상 환경에서 원활한 빅 데이터 학습을 위한 클라우드 기반의 시스템이 필요하다. 이에 본 논문에서는, 빅 데이터 처리 기술의 하나인 Spark를 이용한 빅 데이터 플랫폼 구축에 대하여 기술한다.

  • PDF

Design for Haddop-based Platform to Improve Io T-based Big Data Processing Efficiency (IoT 기반 빅데이터 효율성 향상을 위한 하둡기반 플랫폼 설계)

  • Jang, Kyungsung;Bae, Sang Hyun
    • Journal of Integrative Natural Science
    • /
    • v.13 no.3
    • /
    • pp.114-119
    • /
    • 2020
  • IoT 및 사물인터넷 기반 빅데이터 시스템을 구축하는 경우 발생하는 빈번한 전송에 따른 데이터 오류율과 자원의 비효율적 이용율을 극복하기 위하고 오픈소스기반 하둡시스템의 문제점을 극복하기 위한 본 연구에서는 순수 하둡을 기반으로 적용된 결과를 분석하고 하둡 2.x대 버전을 기준으로 빅데이터 시스템의 용량을 산정한 가이드를 제시하고 용량 산정의 기준을 에코 소프트웨어 적용 플랫폼을 제안한다.

A Big data platform through MBTI personality type classification (MBTI 성격유형 분류를 통한 빅데이터 플랫폼)

  • Jin, Kyung-Jae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.503-505
    • /
    • 2021
  • 정보통신 기술(ICT)의 발달로 이루어진 4 차 산업혁명으로 '빅데이터'의 시대가 도래하고 있다. 소셜 네트워크 서비스(SNS), 사물인터넷(IOT), 인공지능(AI) 등 다양한 장소에서 다양한 형태로 데이터들이 쌓이고 있다. 그중 MBTI 성격유형 검사를 통한 다양한 분석 시스템이 많아지고 있다. 사람들은 재미를 위해 자신의 성향을 입력하고 정해진 MBTI 검사 기준을 통해 결과를 받는다. 이러한 개개인의 성향 데이터를 모으면 거대한 빅데이터 플랫폼을 만들 수 있을 것이라 기대한다. 이에 본 논문은 구체적인 방안을 제시하고자 한다.

Development of Web-based Construction-Site-Safety-Management Platform Using Artificial Intelligence (인공지능을 이용한 웹기반 건축현장 안전관리 플랫폼 개발)

  • Siuk Kim;Eunseok Kim;Cheekyeong Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.77-84
    • /
    • 2024
  • In the fourth industrial-revolution era, the construction industry is transitioning from traditional methods to digital processes. This shift has been challenging owing to the industry's employment of diverse processes and extensive human resources, leading to a gradual adoption of digital technologies through trial and error. One critical area of focus is the safety management at construction sites, which is undergoing significant research and efforts towards digitization and automation. Despite these initiatives, recent statistics indicate a persistent occurrence of accidents and fatalities in construction sites. To address this issue, this study utilizes large-scale language-model artificial intelligence to analyze big data from a construction safety-management information network. The findings are integrated into on-site models, which incorporate real-time updates from detailed design models and are enriched with location information and spatial characteristics, for enhanced safety management. This research aims to develop a big-data-driven safety-management platform to bolster facility and worker safety by digitizing construction-site safety data. This platform can help prevent construction accidents and provide effective education for safety practices.