This paper presents an Optimal Power Flow (OPF) algorithm using Interior Point Method (IPM) to swiftly and precisely perform the five minute dispatch. This newly suggested methodology is based on Affine Scaling Interior Point Method which is favorable for large-scale problems involving many constraints. It is also eligible for OPF problems in order to improve the calculation speed and the preciseness of its resultant solutions. Big-M Method is also used to improve the solution stability. Finally, this paper provides relevant case studies to confirm the efficiency of the proposed methodology.
지난 수년간 스마트 폰 같은 스마트 기기의 빠른 확산과 함께 인터넷과 SNS 등 소셜 미디어가 급성장함에 따라 개인 정보와 소비패턴, 위치 정보 등이 포함된 가치 있는 데이터가 매 순간 엄청난 양으로 생성되고 있으며, M2M (Machine to Machine)과 IoT (Internet of Things) 등이 활성화되면서 IT 및 생산인프라 자체도 다량의 데이터를 직접 생성하기 시작했다. 본 연구는 기업에서 활용할 수 있는 빅데이터의 대표적 유형인 정형 및 비정형 데이터의 적용사례를 고찰함으로써 데이터 유형에 따른적용 영역별 파급효과를 알아본다. 또한 일반적으로 알려져 있는 비정형 빅데이터는 물론 정형빅데이터를 활용하여 실제로 기업에 보다 나은 가치를 창출할 수 있는 방안을 알아보는 것을 목적으로 한다. 이에 대한연구 결과로 빅데이터의 기업내 활동이 나아갈 수 있는 지향점으로써 내 외부에서 발생하는 정형데이터와 비정형 데이터를 적절히 결합함으로써 분석의 효과를 극대화 할 수 있음을 보여 주었다.
빅데이터 분석은 데이터 저장소에 저장된 대용량 데이터 속에서 의미 있는 새로운 상관관계, 패턴, 추세를 발견하여 새로운 가치를 창출하는 과정이다. 또한 빅데이터 분석은 소셜 빅데이터, 실시간 사물지능통신(M2M; Machine to Machine), 센서 데이터, 기업 고객관계 데이터 등 도처에 존재하는 다양한 성격의 빅데이터를 효과적으로 분석하는 것을 말한다. 빅데이터 시대에는 단순히 데이터 베이스에 잘 정리된 정형 데이터뿐만 아니라 인터넷, 소셜 네트워크 서비스, 모바일 환경에서 폭발적으로 생성되는 웹 문서, 이메일, 소셜 데이터 등 비정형 빅데이터를 효과적으로 분석하는 것이 무엇보다 중요해졌다. 그런데 메타분석은 여러 실증연구의 정량적인 결과를 통합과 분석을 통해 전체 결과를 조망할 기회를 제공하는 통계적 통합 방법이다. 따라서 본 연구는 우리나라에서 2000년-2017년 사이 혁신확산이론 모델을 기반으로 한 주제로 출판된 연구 50개 논문 750개 샘플을 대상으로 하였다.
It will be possible to solve some of the major issues in our society and economy with the emerging Big Data used across 21st century global digital economy. One of the main areas where big data can be quite useful is the medical and health area. IT technology is being used extensively in this area and expected to expand its application field further. However, there is still room for improvement in the usage of Big Data as it is difficult to search unstructured data contained in Big Data and collect statistics for them. This limits wider application of Big Data. Depending on data collection and analysis method, the results from a Big Data can be varied. Some of them could be positive or negative so that it is essential that Big Data should be handled adequately and appropriately adapting to a purpose. Therefore, a Big Data has been constructed in this study to applying Crawling technique for data mining and analyzed with R. Also, the data were visualized for easier recognition and this was effective in developing an individualized health plan from different angles.
Ha, Jung-Soo;Lim, Byong-Gu;Doh, Geum-Hyun;Kang, In-Aeh;Kim, Chang-Sam
한국세라믹학회지
/
제47권4호
/
pp.308-311
/
2010
Porous SiC samples were prepared with three types of wood (poplar, pine, big cone pine) by simply embedding the wood charcoal in a powder mixture of Si and $SiO_2$ at 1600 and $1700^{\circ}C$. The basic engineering properties such as density, porosity, pore size and distribution, and strength were characterized. The samples showed full conversion to mostly $\beta$-SiC with good retention of the cellular structure of the original wood. More rigid SiC struts were developed for $1700^{\circ}C$. They showed similar bulk density ($0.5{\sim}0.6\;g/cm^3$) and porosity (81~84%) irrespective of the type of wood. The poplar sample showed three pore sizes (1, 8, $60\;{\mu}m$) with a main size of $60\;{\mu}m$. The pine sample showed a single pore size ($20\;{\mu}m$). The big cone pine sample showed two pore sizes (10, $80\;{\mu}m$) with a main size of $10\;{\mu}m$. The bend strength was 2.5 MPa for poplar, 5.7 MPa for pine, 2.8 MPa for big cone pine, indicating higher strength with pine.
Attigeri, Girija;Manohara Pai, M.M.;Pai, Radhika M.
Journal of Information Processing Systems
/
제15권6호
/
pp.1306-1325
/
2019
As the world is moving towards digitization, data is generated from various sources at a faster rate. It is getting humungous and is termed as big data. The financial sector is one domain which needs to leverage the big data being generated to identify financial risks, fraudulent activities, and so on. The design of predictive models for such financial big data is imperative for maintaining the health of the country's economics. Financial data has many features such as transaction history, repayment data, purchase data, investment data, and so on. The main problem in predictive algorithm is finding the right subset of representative features from which the predictive model can be constructed for a particular task. This paper proposes a correlation-based method using submodular optimization for selecting the optimum number of features and thereby, reducing the dimensions of the data for faster and better prediction. The important proposition is that the optimal feature subset should contain features having high correlation with the class label, but should not correlate with each other in the subset. Experiments are conducted to understand the effect of the various subsets on different classification algorithms for loan data. The IBM Bluemix BigData platform is used for experimentation along with the Spark notebook. The results indicate that the proposed approach achieves considerable accuracy with optimal subsets in significantly less execution time. The algorithm is also compared with the existing feature selection and extraction algorithms.
U-Healthcare는 언제, 어디서나 환자의 건강을 검사하고 관리하며 유지할 수 있도록 하는 의료와 IT가 융합된 서비스이다. U-Healthcare 서비스에서 이루어지는 통신은 검진한 분석 결과나 긴급 데이터를 무선 통신방식을 이용하여 병원 서버에 전송하는 방식이 활용되고 있다. 이 때 악의적인 접근을 수행하는 자(공격자)가 U-Healthcare기기나 BS(Base Station)에 DRDoS(Distributed Reflection DoS)공격을 하면 위급한 환자의 상황 정보가 병원 서버까지 전송되지 않는 다양한 피해가 예상된다. 이를 대응하기 위해 DRDoS 공격 시나리오와 DRDoS에 대한 대응방안을 제안하고 대량의 패킷을 처리할 수 있는 빅데이터와 융합한다. 공격자가 U-Healthcare 기기나 BS(Base Station)를 공격 시 DB와 연동하여 일치하면 공격을 막는다. 본 논문은 원격의료 서비스인 U-Healthcare기기나 BS에서 나타날 수 있는 공격방법을 분석하고, 빅데이터를 활용하여 보안 위협에서의 대응방안을 제안한다.
Building energy consumption generally depends on living patterns of residents and outdoor air temperature changes. Although outdoor air temperature changes effect on building energy consumption, there is no calibration method for the comparison before and after Green Remodeling or BEMS installation etc., Big data of building energy consumption are collected and managed by 『National Integrated Management System of Building Energy』 in Korea, and they are utilized for the development of a calibration method for individual buildings as shown as the calibration method for small-area building stocks in the previous research. This study aims to develope a calibration method using big data of building energy consumption of individual buildings and outdoor air temperature changes, and to propose application of appropriate calibration methods for individual buildings or small-area building stocks according to the calibration purpose and conditions.
The speed performances of ice sea trial on the Arctic(2010 & 2011) area were shown different results depend on the ice floe size. Penetration phenomena of level ice was not happened on medium ice floe and tore up by the impact force because the mass of medium ice floe is similar to the mass of Araon which is Korean ice breaking research vessel and did not shut up by the ice ridge or iceberg. The sea trial on the Amundsen sea was performed at the big floe which is classified by WMO(World Meteorological Organization). Three measurements of ice properties and five results of speed trial were obtained with different ice thicknesses and engine powers. To evaluate speed of level ice trial and model test results at the same ice thickness and engine power, the correction method of HSVA(Hamburg Ship Model Basin) was used. The thickness, snow effect, flexural strength and friction coefficient were corrected to compare the speed of sea trial. The analyzed speed at 1.03m thickness of big floe was 5.85 knots at 10MW power and it's 6.10 knots at 1.0m ice thickness and the same power. It's bigger than the results of level ice because big floe was also slightly tore up by the impact force of vessel based on the observation of recorded video.
Since 1990, the Renewable Big Data Research Lab at the Korea Institute of Energy Technology has been observing solar radiation at 16 sites across South Korea. Serving as the National Reference Standard Data Center for Renewable Energy since 2012, it produces essential data for the sector. By 2020, it standardized meteorological year data from 22 sites. Despite user demand for data from approximately 260 sites, equivalent to South Korea's municipalities, this need exceeds the capability of measurement-based data. In response, our team developed a method to derive solar radiation data from satellite images, covering South Korea in 400,000 grids of 500 m × 500 m each. Utilizing satellite-derived data and ERA5-Land reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF), we produced standard meteorological year data for 1,000 sites. Our research also focused on data measurement traceability and uncertainty estimation, ensuring the reliability of our model data and the traceability of existing measurement-based data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.