• 제목/요약/키워드: Big-M Method

검색결과 195건 처리시간 0.028초

Affine Scaling Interior Point Method를 이용한 제약급전에 관한 연구 (A Study on the Constrained Dispatch Scheduling Using Affine Scaling Interior Point Method)

  • 김경민;한석만;정구형;김발호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권3호
    • /
    • pp.133-138
    • /
    • 2006
  • This paper presents an Optimal Power Flow (OPF) algorithm using Interior Point Method (IPM) to swiftly and precisely perform the five minute dispatch. This newly suggested methodology is based on Affine Scaling Interior Point Method which is favorable for large-scale problems involving many constraints. It is also eligible for OPF problems in order to improve the calculation speed and the preciseness of its resultant solutions. Big-M Method is also used to improve the solution stability. Finally, this paper provides relevant case studies to confirm the efficiency of the proposed methodology.

기업의 빅데이터 적용방안 연구 -A사, Y사 빅데이터 시스템 적용 사례- (Study on the Application Methods of Big Data at a Corporation -Cases of A and Y corporation Big Data System Projects-)

  • 이재성;홍성찬
    • 인터넷정보학회논문지
    • /
    • 제15권1호
    • /
    • pp.103-112
    • /
    • 2014
  • 지난 수년간 스마트 폰 같은 스마트 기기의 빠른 확산과 함께 인터넷과 SNS 등 소셜 미디어가 급성장함에 따라 개인 정보와 소비패턴, 위치 정보 등이 포함된 가치 있는 데이터가 매 순간 엄청난 양으로 생성되고 있으며, M2M (Machine to Machine)과 IoT (Internet of Things) 등이 활성화되면서 IT 및 생산인프라 자체도 다량의 데이터를 직접 생성하기 시작했다. 본 연구는 기업에서 활용할 수 있는 빅데이터의 대표적 유형인 정형 및 비정형 데이터의 적용사례를 고찰함으로써 데이터 유형에 따른적용 영역별 파급효과를 알아본다. 또한 일반적으로 알려져 있는 비정형 빅데이터는 물론 정형빅데이터를 활용하여 실제로 기업에 보다 나은 가치를 창출할 수 있는 방안을 알아보는 것을 목적으로 한다. 이에 대한연구 결과로 빅데이터의 기업내 활동이 나아갈 수 있는 지향점으로써 내 외부에서 발생하는 정형데이터와 비정형 데이터를 적절히 결합함으로써 분석의 효과를 극대화 할 수 있음을 보여 주었다.

혁신확산이론 기반 소비자 행위의도에 관한 메타분석 (A Meta Analysis of Innovation Diffusion Theory based on Behavioral Intention of Consumer)

  • 남수태;김도관;진찬용
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.140-141
    • /
    • 2017
  • 빅데이터 분석은 데이터 저장소에 저장된 대용량 데이터 속에서 의미 있는 새로운 상관관계, 패턴, 추세를 발견하여 새로운 가치를 창출하는 과정이다. 또한 빅데이터 분석은 소셜 빅데이터, 실시간 사물지능통신(M2M; Machine to Machine), 센서 데이터, 기업 고객관계 데이터 등 도처에 존재하는 다양한 성격의 빅데이터를 효과적으로 분석하는 것을 말한다. 빅데이터 시대에는 단순히 데이터 베이스에 잘 정리된 정형 데이터뿐만 아니라 인터넷, 소셜 네트워크 서비스, 모바일 환경에서 폭발적으로 생성되는 웹 문서, 이메일, 소셜 데이터 등 비정형 빅데이터를 효과적으로 분석하는 것이 무엇보다 중요해졌다. 그런데 메타분석은 여러 실증연구의 정량적인 결과를 통합과 분석을 통해 전체 결과를 조망할 기회를 제공하는 통계적 통합 방법이다. 따라서 본 연구는 우리나라에서 2000년-2017년 사이 혁신확산이론 모델을 기반으로 한 주제로 출판된 연구 50개 논문 750개 샘플을 대상으로 하였다.

  • PDF

A Keyword-Based Big Data Analysis for Individualized Health Activity: Focusing on Methodological Approach

  • 김한별;배근표;허준호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.540-543
    • /
    • 2017
  • It will be possible to solve some of the major issues in our society and economy with the emerging Big Data used across 21st century global digital economy. One of the main areas where big data can be quite useful is the medical and health area. IT technology is being used extensively in this area and expected to expand its application field further. However, there is still room for improvement in the usage of Big Data as it is difficult to search unstructured data contained in Big Data and collect statistics for them. This limits wider application of Big Data. Depending on data collection and analysis method, the results from a Big Data can be varied. Some of them could be positive or negative so that it is essential that Big Data should be handled adequately and appropriately adapting to a purpose. Therefore, a Big Data has been constructed in this study to applying Crawling technique for data mining and analyzed with R. Also, the data were visualized for easier recognition and this was effective in developing an individualized health plan from different angles.

Properties of Porous SiC Ceramics Prepared by Wood Template Method

  • Ha, Jung-Soo;Lim, Byong-Gu;Doh, Geum-Hyun;Kang, In-Aeh;Kim, Chang-Sam
    • 한국세라믹학회지
    • /
    • 제47권4호
    • /
    • pp.308-311
    • /
    • 2010
  • Porous SiC samples were prepared with three types of wood (poplar, pine, big cone pine) by simply embedding the wood charcoal in a powder mixture of Si and $SiO_2$ at 1600 and $1700^{\circ}C$. The basic engineering properties such as density, porosity, pore size and distribution, and strength were characterized. The samples showed full conversion to mostly $\beta$-SiC with good retention of the cellular structure of the original wood. More rigid SiC struts were developed for $1700^{\circ}C$. They showed similar bulk density ($0.5{\sim}0.6\;g/cm^3$) and porosity (81~84%) irrespective of the type of wood. The poplar sample showed three pore sizes (1, 8, $60\;{\mu}m$) with a main size of $60\;{\mu}m$. The pine sample showed a single pore size ($20\;{\mu}m$). The big cone pine sample showed two pore sizes (10, $80\;{\mu}m$) with a main size of $10\;{\mu}m$. The bend strength was 2.5 MPa for poplar, 5.7 MPa for pine, 2.8 MPa for big cone pine, indicating higher strength with pine.

Feature Selection Using Submodular Approach for Financial Big Data

  • Attigeri, Girija;Manohara Pai, M.M.;Pai, Radhika M.
    • Journal of Information Processing Systems
    • /
    • 제15권6호
    • /
    • pp.1306-1325
    • /
    • 2019
  • As the world is moving towards digitization, data is generated from various sources at a faster rate. It is getting humungous and is termed as big data. The financial sector is one domain which needs to leverage the big data being generated to identify financial risks, fraudulent activities, and so on. The design of predictive models for such financial big data is imperative for maintaining the health of the country's economics. Financial data has many features such as transaction history, repayment data, purchase data, investment data, and so on. The main problem in predictive algorithm is finding the right subset of representative features from which the predictive model can be constructed for a particular task. This paper proposes a correlation-based method using submodular optimization for selecting the optimum number of features and thereby, reducing the dimensions of the data for faster and better prediction. The important proposition is that the optimal feature subset should contain features having high correlation with the class label, but should not correlate with each other in the subset. Experiments are conducted to understand the effect of the various subsets on different classification algorithms for loan data. The IBM Bluemix BigData platform is used for experimentation along with the Spark notebook. The results indicate that the proposed approach achieves considerable accuracy with optimal subsets in significantly less execution time. The algorithm is also compared with the existing feature selection and extraction algorithms.

U-Healthcare 기기에서 DRDoS공격 보안위협과 Big Data를 융합한 대응방안 연구 (A Study on Countermeasures of Convergence for Big Data and Security Threats to Attack DRDoS in U-Healthcare Device)

  • 허윤아;이근호
    • 한국융합학회논문지
    • /
    • 제6권4호
    • /
    • pp.243-248
    • /
    • 2015
  • U-Healthcare는 언제, 어디서나 환자의 건강을 검사하고 관리하며 유지할 수 있도록 하는 의료와 IT가 융합된 서비스이다. U-Healthcare 서비스에서 이루어지는 통신은 검진한 분석 결과나 긴급 데이터를 무선 통신방식을 이용하여 병원 서버에 전송하는 방식이 활용되고 있다. 이 때 악의적인 접근을 수행하는 자(공격자)가 U-Healthcare기기나 BS(Base Station)에 DRDoS(Distributed Reflection DoS)공격을 하면 위급한 환자의 상황 정보가 병원 서버까지 전송되지 않는 다양한 피해가 예상된다. 이를 대응하기 위해 DRDoS 공격 시나리오와 DRDoS에 대한 대응방안을 제안하고 대량의 패킷을 처리할 수 있는 빅데이터와 융합한다. 공격자가 U-Healthcare 기기나 BS(Base Station)를 공격 시 DB와 연동하여 일치하면 공격을 막는다. 본 논문은 원격의료 서비스인 U-Healthcare기기나 BS에서 나타날 수 있는 공격방법을 분석하고, 빅데이터를 활용하여 보안 위협에서의 대응방안을 제안한다.

개별건물 에너지소비량 보정기법 개발 및 적용방안 (Development and Application of the Calibration Method of Individual Building Energy Consumption)

  • 김동일;이병호
    • 한국태양에너지학회 논문집
    • /
    • 제40권1호
    • /
    • pp.15-24
    • /
    • 2020
  • Building energy consumption generally depends on living patterns of residents and outdoor air temperature changes. Although outdoor air temperature changes effect on building energy consumption, there is no calibration method for the comparison before and after Green Remodeling or BEMS installation etc., Big data of building energy consumption are collected and managed by 『National Integrated Management System of Building Energy』 in Korea, and they are utilized for the development of a calibration method for individual buildings as shown as the calibration method for small-area building stocks in the previous research. This study aims to develope a calibration method using big data of building energy consumption of individual buildings and outdoor air temperature changes, and to propose application of appropriate calibration methods for individual buildings or small-area building stocks according to the calibration purpose and conditions.

큰 빙판에서 아라온 호 쇄빙 속도 성능 해석 (Speed Trial Analysis of Korean Ice Breaking Research Vessel 'Araon' on the Big Floes)

  • 김현수;이춘주;최경식
    • 대한조선학회논문집
    • /
    • 제49권6호
    • /
    • pp.478-483
    • /
    • 2012
  • The speed performances of ice sea trial on the Arctic(2010 & 2011) area were shown different results depend on the ice floe size. Penetration phenomena of level ice was not happened on medium ice floe and tore up by the impact force because the mass of medium ice floe is similar to the mass of Araon which is Korean ice breaking research vessel and did not shut up by the ice ridge or iceberg. The sea trial on the Amundsen sea was performed at the big floe which is classified by WMO(World Meteorological Organization). Three measurements of ice properties and five results of speed trial were obtained with different ice thicknesses and engine powers. To evaluate speed of level ice trial and model test results at the same ice thickness and engine power, the correction method of HSVA(Hamburg Ship Model Basin) was used. The thickness, snow effect, flexural strength and friction coefficient were corrected to compare the speed of sea trial. The analyzed speed at 1.03m thickness of big floe was 5.85 knots at 10MW power and it's 6.10 knots at 1.0m ice thickness and the same power. It's bigger than the results of level ice because big floe was also slightly tore up by the impact force of vessel based on the observation of recorded video.

신재생에너지 국가참조표준 시스템 구축 및 개발 - 모델 기반 표준기상년 (System Construction and Data Development of National Standard Reference for Renewable Energy - Model-Based Standard Meteorological Year)

  • 김보영;김창기;윤창열;김현구;강용혁
    • 신재생에너지
    • /
    • 제20권1호
    • /
    • pp.95-101
    • /
    • 2024
  • Since 1990, the Renewable Big Data Research Lab at the Korea Institute of Energy Technology has been observing solar radiation at 16 sites across South Korea. Serving as the National Reference Standard Data Center for Renewable Energy since 2012, it produces essential data for the sector. By 2020, it standardized meteorological year data from 22 sites. Despite user demand for data from approximately 260 sites, equivalent to South Korea's municipalities, this need exceeds the capability of measurement-based data. In response, our team developed a method to derive solar radiation data from satellite images, covering South Korea in 400,000 grids of 500 m × 500 m each. Utilizing satellite-derived data and ERA5-Land reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF), we produced standard meteorological year data for 1,000 sites. Our research also focused on data measurement traceability and uncertainty estimation, ensuring the reliability of our model data and the traceability of existing measurement-based data.