• Title/Summary/Keyword: Big data model

Search Result 1,384, Processing Time 0.033 seconds

Smoking-attributable Mortality in Korea, 2020: A Meta-analysis of 4 Databases

  • Eunsil Cheon;Yeun Soo Yang;Suyoung Jo;Jieun Hwang;Keum Ji Jung;Sunmi Lee;Seong Yong Park;Kyoungin Na;Soyeon Kim;Sun Ha Jee;Sung-il Cho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.57 no.4
    • /
    • pp.327-338
    • /
    • 2024
  • Objectives: Estimating the number of deaths caused by smoking is crucial for developing and evaluating tobacco control and smoking cessation policies. This study aimed to determine smoking-attributable mortality (SAM) in Korea in 2020. Methods: Four large-scale cohorts from Korea were analyzed. A Cox proportional-hazards model was used to determine the hazard ratios (HRs) of smoking-related death. By conducting a meta-analysis of these HRs, the pooled HRs of smoking-related death for 41 diseases were estimated. Population-attributable fractions (PAFs) were calculated based on the smoking prevalence for 1995 in conjunction with the pooled HRs. Subsequently, SAM was derived using the PAF and the number of deaths recorded for each disease in 2020. Results: The pooled HR for all-cause mortality attributable to smoking was 1.73 for current men smokers (95% confidence interval [CI], 1.53 to 1.95) and 1.63 for current women smokers (95% CI, 1.37 to 1.94). Smoking accounted for 33.2% of all-cause deaths in men and 4.6% in women. Additionally, it was a factor in 71.8% of men lung cancer deaths and 11.9% of women lung cancer deaths. In 2020, smoking was responsible for 53 930 men deaths and 6283 women deaths, totaling 60 213 deaths. Conclusions: Cigarette smoking was responsible for a significant number of deaths in Korea in 2020. Monitoring the impact and societal burden of smoking is essential for effective tobacco control and harm prevention policies.

A Study of 'Emotion Trigger' by Text Mining Techniques (텍스트 마이닝을 이용한 감정 유발 요인 'Emotion Trigger'에 관한 연구)

  • An, Juyoung;Bae, Junghwan;Han, Namgi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.69-92
    • /
    • 2015
  • The explosion of social media data has led to apply text-mining techniques to analyze big social media data in a more rigorous manner. Even if social media text analysis algorithms were improved, previous approaches to social media text analysis have some limitations. In the field of sentiment analysis of social media written in Korean, there are two typical approaches. One is the linguistic approach using machine learning, which is the most common approach. Some studies have been conducted by adding grammatical factors to feature sets for training classification model. The other approach adopts the semantic analysis method to sentiment analysis, but this approach is mainly applied to English texts. To overcome these limitations, this study applies the Word2Vec algorithm which is an extension of the neural network algorithms to deal with more extensive semantic features that were underestimated in existing sentiment analysis. The result from adopting the Word2Vec algorithm is compared to the result from co-occurrence analysis to identify the difference between two approaches. The results show that the distribution related word extracted by Word2Vec algorithm in that the words represent some emotion about the keyword used are three times more than extracted by co-occurrence analysis. The reason of the difference between two results comes from Word2Vec's semantic features vectorization. Therefore, it is possible to say that Word2Vec algorithm is able to catch the hidden related words which have not been found in traditional analysis. In addition, Part Of Speech (POS) tagging for Korean is used to detect adjective as "emotional word" in Korean. In addition, the emotion words extracted from the text are converted into word vector by the Word2Vec algorithm to find related words. Among these related words, noun words are selected because each word of them would have causal relationship with "emotional word" in the sentence. The process of extracting these trigger factor of emotional word is named "Emotion Trigger" in this study. As a case study, the datasets used in the study are collected by searching using three keywords: professor, prosecutor, and doctor in that these keywords contain rich public emotion and opinion. Advanced data collecting was conducted to select secondary keywords for data gathering. The secondary keywords for each keyword used to gather the data to be used in actual analysis are followed: Professor (sexual assault, misappropriation of research money, recruitment irregularities, polifessor), Doctor (Shin hae-chul sky hospital, drinking and plastic surgery, rebate) Prosecutor (lewd behavior, sponsor). The size of the text data is about to 100,000(Professor: 25720, Doctor: 35110, Prosecutor: 43225) and the data are gathered from news, blog, and twitter to reflect various level of public emotion into text data analysis. As a visualization method, Gephi (http://gephi.github.io) was used and every program used in text processing and analysis are java coding. The contributions of this study are as follows: First, different approaches for sentiment analysis are integrated to overcome the limitations of existing approaches. Secondly, finding Emotion Trigger can detect the hidden connections to public emotion which existing method cannot detect. Finally, the approach used in this study could be generalized regardless of types of text data. The limitation of this study is that it is hard to say the word extracted by Emotion Trigger processing has significantly causal relationship with emotional word in a sentence. The future study will be conducted to clarify the causal relationship between emotional words and the words extracted by Emotion Trigger by comparing with the relationships manually tagged. Furthermore, the text data used in Emotion Trigger are twitter, so the data have a number of distinct features which we did not deal with in this study. These features will be considered in further study.

Determinants of Mobile Application Use: A Study Focused on the Correlation between Application Categories (모바일 앱 사용에 영향을 미치는 요인에 관한 연구: 앱 카테고리 간 상관관계를 중심으로)

  • Park, Sangkyu;Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.157-176
    • /
    • 2016
  • For a long time, mobile phone had a sole function of communication. Recently however, abrupt innovations in technology allowed extension of the sphere in mobile phone activities. Development of technology enabled realization of almost computer-like environment even on a very small device. Such advancement yielded several forms of new high-tech devices such as smartphone and tablet PC, which quickly proliferated. Simultaneously with the diffusion of the mobile devices, mobile applications for those devices also prospered and soon became deeply penetrated in consumers' daily lives. Numerous mobile applications have been released in app stores yielding trillions of cumulative downloads. However, a big majority of the applications are disregarded from consumers. Even after the applications are purchased, they do not survive long in consumers' mobile devices and are soon abandoned. Nevertheless, it is imperative for both app developers and app-store operators to understand consumer behaviors and to develop marketing strategies aiming to make sustainable business by first increasing sales of mobile applications and by also designing surviving strategy for applications. Therefore, this research analyzes consumers' mobile application usage behavior in a frame of substitution/supplementary of application categories and several explanatory variables. Considering that consumers of mobile devices use multiple apps simultaneously, this research adopts multivariate probit models to explain mobile application usage behavior and to derive correlation between categories of applications for observing substitution/supplementary of application use. The research adopts several explanatory variables including sociodemographic data, user experiences of purchased applications that reflect future purchasing behavior of paid applications as well as consumer attitudes toward marketing efforts, variables representing consumer attitudes toward rating of the app and those representing consumer attitudes toward app-store promotion efforts (i.e., top developer badge and editor's choice badge). Results of this study can be explained in hedonic and utilitarian framework. Consumers who use hedonic applications, such as those of game and entertainment-related, are of young age with low education level. However, consumers who are old and have received higher education level prefer utilitarian application category such as life, information etc. There are disputable arguments over whether the users of SNS are hedonic or utilitarian. In our results, consumers who are younger and those with higher education level prefer using SNS category applications, which is in a middle of utilitarian and hedonic results. Also, applications that are directly related to tangible assets, such as banking, stock and mobile shopping, are only negatively related to experience of purchasing of paid app, meaning that consumers who put weights on tangible assets do not prefer buying paid application. Regarding categories, most correlations among categories are significantly positive. This is because someone who spend more time on mobile devices tends to use more applications. Game and entertainment category shows significant and positive correlation; however, there exists significantly negative correlation between game and information, as well as game and e-commerce categories of applications. Meanwhile, categories of game and SNS as well as game and finance have shown no significant correlations. This result clearly shows that mobile application usage behavior is quite clearly distinguishable - that the purpose of using mobile devices are polarized into utilitarian and hedonic purpose. This research proves several arguments that can only be explained by second-hand real data, not by survey data, and offers behavioral explanations of mobile application usage in consumers' perspectives. This research also shows substitution/supplementary patterns of consumer application usage, which then explain consumers' mobile application usage behaviors. However, this research has limitations in some points. Classification of categories itself is disputable, for classification is diverged among several studies. Therefore, there is a possibility of change in results depending on the classification. Lastly, although the data are collected in an individual application level, we reduce its observation into an individual level. Further research will be done to resolve these limitations.

An Empirical Study on the Spatial Effect of Distribution Patterns between Small Business and Social-environmental factors (소상공인 점포의 분포와 환경요인의 공간적 영향관계에 관한 실증연구)

  • YOO, Mu-Sang;CHOI, Don-Jeong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.1-18
    • /
    • 2019
  • This research measured and visualized the spatial dependency and the spatial heterogeneity of the small business in Cheonan-si, Asan-si with $100m{\times}100m$ grids based on global and local spatial autocorrelation. First, we confirmed positive spatial autocorrelation of small business in the research area using Moran's I Index, which is ESDA(Exploratory Spatial Data Analysis). And then, through Getis-Ord $GI{\ast}$, one kind of LISA(Local Indicators of Spatial Association), local patterns of spatial autocorrelation were visualized. These verified that Spatial Regression Model is valid for the location factor analysis on small business commercial buildings. Next, GWR(Geographically Weighted Regression) was used to analyze the spatial relations between the distribution of small business, hourly mobile traffic-based floating population, land use attributes index, residence, commercial building, road networks, and the node of traffic networks. Final six variables were applied and the accessibility to bus stops, afternoon time floating population, and evening time floating population were excluded due to multicollinearity. By this, we demonstrated that GWR is statistically improved compared to OLS. We visualized the spatial influence of the individual variables using the regression coefficients and local coefficients of determinant of the six variables. This research applied the measured population information in a practical way. Reflecting the dynamic information of the urban people using the commercial area. It is different from other studies that performed commercial analysis. Finally, this research has a differentiated advantage over the existing commercial area analysis in that it employed hourly changing commercial service population data and it applied spatial statistical models to micro spatial units. This research proposed new framework for the commercial analysis area analysis.

An Investigation on the Periodical Transition of News related to North Korea using Text Mining (텍스트마이닝을 활용한 북한 관련 뉴스의 기간별 변화과정 고찰)

  • Park, Chul-Soo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.63-88
    • /
    • 2019
  • The goal of this paper is to investigate changes in North Korea's domestic and foreign policies through automated text analysis over North Korea represented in South Korean mass media. Based on that data, we then analyze the status of text mining research, using a text mining technique to find the topics, methods, and trends of text mining research. We also investigate the characteristics and method of analysis of the text mining techniques, confirmed by analysis of the data. In this study, R program was used to apply the text mining technique. R program is free software for statistical computing and graphics. Also, Text mining methods allow to highlight the most frequently used keywords in a paragraph of texts. One can create a word cloud, also referred as text cloud or tag cloud. This study proposes a procedure to find meaningful tendencies based on a combination of word cloud, and co-occurrence networks. This study aims to more objectively explore the images of North Korea represented in South Korean newspapers by quantitatively reviewing the patterns of language use related to North Korea from 2016. 11. 1 to 2019. 5. 23 newspaper big data. In this study, we divided into three periods considering recent inter - Korean relations. Before January 1, 2018, it was set as a Before Phase of Peace Building. From January 1, 2018 to February 24, 2019, we have set up a Peace Building Phase. The New Year's message of Kim Jong-un and the Olympics of Pyeong Chang formed an atmosphere of peace on the Korean peninsula. After the Hanoi Pease summit, the third period was the silence of the relationship between North Korea and the United States. Therefore, it was called Depression Phase of Peace Building. This study analyzes news articles related to North Korea of the Korea Press Foundation database(www.bigkinds.or.kr) through text mining, to investigate characteristics of the Kim Jong-un regime's South Korea policy and unification discourse. The main results of this study show that trends in the North Korean national policy agenda can be discovered based on clustering and visualization algorithms. In particular, it examines the changes in the international circumstances, domestic conflicts, the living conditions of North Korea, the South's Aid project for the North, the conflicts of the two Koreas, North Korean nuclear issue, and the North Korean refugee problem through the co-occurrence word analysis. It also offers an analysis of South Korean mentality toward North Korea in terms of the semantic prosody. In the Before Phase of Peace Building, the results of the analysis showed the order of 'Missiles', 'North Korea Nuclear', 'Diplomacy', 'Unification', and ' South-North Korean'. The results of Peace Building Phase are extracted the order of 'Panmunjom', 'Unification', 'North Korea Nuclear', 'Diplomacy', and 'Military'. The results of Depression Phase of Peace Building derived the order of 'North Korea Nuclear', 'North and South Korea', 'Missile', 'State Department', and 'International'. There are 16 words adopted in all three periods. The order is as follows: 'missile', 'North Korea Nuclear', 'Diplomacy', 'Unification', 'North and South Korea', 'Military', 'Kaesong Industrial Complex', 'Defense', 'Sanctions', 'Denuclearization', 'Peace', 'Exchange and Cooperation', and 'South Korea'. We expect that the results of this study will contribute to analyze the trends of news content of North Korea associated with North Korea's provocations. And future research on North Korean trends will be conducted based on the results of this study. We will continue to study the model development for North Korea risk measurement that can anticipate and respond to North Korea's behavior in advance. We expect that the text mining analysis method and the scientific data analysis technique will be applied to North Korea and unification research field. Through these academic studies, I hope to see a lot of studies that make important contributions to the nation.

Development of a complex failure prediction system using Hierarchical Attention Network (Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발)

  • Park, Youngchan;An, Sangjun;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.127-148
    • /
    • 2020
  • The data center is a physical environment facility for accommodating computer systems and related components, and is an essential foundation technology for next-generation core industries such as big data, smart factories, wearables, and smart homes. In particular, with the growth of cloud computing, the proportional expansion of the data center infrastructure is inevitable. Monitoring the health of these data center facilities is a way to maintain and manage the system and prevent failure. If a failure occurs in some elements of the facility, it may affect not only the relevant equipment but also other connected equipment, and may cause enormous damage. In particular, IT facilities are irregular due to interdependence and it is difficult to know the cause. In the previous study predicting failure in data center, failure was predicted by looking at a single server as a single state without assuming that the devices were mixed. Therefore, in this study, data center failures were classified into failures occurring inside the server (Outage A) and failures occurring outside the server (Outage B), and focused on analyzing complex failures occurring within the server. Server external failures include power, cooling, user errors, etc. Since such failures can be prevented in the early stages of data center facility construction, various solutions are being developed. On the other hand, the cause of the failure occurring in the server is difficult to determine, and adequate prevention has not yet been achieved. In particular, this is the reason why server failures do not occur singularly, cause other server failures, or receive something that causes failures from other servers. In other words, while the existing studies assumed that it was a single server that did not affect the servers and analyzed the failure, in this study, the failure occurred on the assumption that it had an effect between servers. In order to define the complex failure situation in the data center, failure history data for each equipment existing in the data center was used. There are four major failures considered in this study: Network Node Down, Server Down, Windows Activation Services Down, and Database Management System Service Down. The failures that occur for each device are sorted in chronological order, and when a failure occurs in a specific equipment, if a failure occurs in a specific equipment within 5 minutes from the time of occurrence, it is defined that the failure occurs simultaneously. After configuring the sequence for the devices that have failed at the same time, 5 devices that frequently occur simultaneously within the configured sequence were selected, and the case where the selected devices failed at the same time was confirmed through visualization. Since the server resource information collected for failure analysis is in units of time series and has flow, we used Long Short-term Memory (LSTM), a deep learning algorithm that can predict the next state through the previous state. In addition, unlike a single server, the Hierarchical Attention Network deep learning model structure was used in consideration of the fact that the level of multiple failures for each server is different. This algorithm is a method of increasing the prediction accuracy by giving weight to the server as the impact on the failure increases. The study began with defining the type of failure and selecting the analysis target. In the first experiment, the same collected data was assumed as a single server state and a multiple server state, and compared and analyzed. The second experiment improved the prediction accuracy in the case of a complex server by optimizing each server threshold. In the first experiment, which assumed each of a single server and multiple servers, in the case of a single server, it was predicted that three of the five servers did not have a failure even though the actual failure occurred. However, assuming multiple servers, all five servers were predicted to have failed. As a result of the experiment, the hypothesis that there is an effect between servers is proven. As a result of this study, it was confirmed that the prediction performance was superior when the multiple servers were assumed than when the single server was assumed. In particular, applying the Hierarchical Attention Network algorithm, assuming that the effects of each server will be different, played a role in improving the analysis effect. In addition, by applying a different threshold for each server, the prediction accuracy could be improved. This study showed that failures that are difficult to determine the cause can be predicted through historical data, and a model that can predict failures occurring in servers in data centers is presented. It is expected that the occurrence of disability can be prevented in advance using the results of this study.

A study on the CRM strategy for medium and small industry of distribution (중소유통업체의 CRM 도입방안에 관한 연구)

  • Kim, Gi-Pyoung
    • Journal of Distribution Science
    • /
    • v.8 no.3
    • /
    • pp.37-47
    • /
    • 2010
  • CRM refers to the operating activities that always maintain and promote good relationship with customers to ultimately maximize the company's profits by understanding the value of customers to meet their demands, establishing a strategy which may maximize the Life Time Value and successfully operating the business by integrating the customer management processes. In our country, many big businesses are introducing CRM initiatively to use it in marketing strategy however, most medium and small sized companies do not understand CRM clearly or they feel difficult to introduce it due to huge investment needed. This study is intended to present CRM promotion strategy and activities plan fit for the medium and small sized companies by analyzing the success factors of the leading companies those have already executed CRM by surveying the precedents to make the distributors out of the industries have close relation with consumers to overcome their weakness in scale and strengthen their competitiveness in such a rapidly changing and fiercely competing market. There are 5 stages to build CRM such as the recognition of the needs of CRM establishment, the establishment of CRM integrated database, the establishment of customer analysis and marketing strategy through data mining, the practical use of customer analysis through data mining and the implementation of response analysis and close loop process. Through the case study of leading companies, CRM is needed in types of businesses where the companies constantly contact their customers. To meet their needs, they assertively analyze their customer information. Through this, they develop their own CRM programs personalized for their customers to provide high quality service products. For customers helping them make profits, the VIP marketing strategy is conducted to keep the customers from breaking their relationships with the companies. Through continuous management, CRM should be executed. In other words, through customer segmentation, the profitability for the customers should be maximized. The maximization of the profitability for the customers is the key to CRM. These are the success factors of the CRM of the distributors in Korea. Firstly, the top management's will power for CS management is needed. Secondly, the culture across the company should be made to respect the customers. Thirdly, specialized customer management and CRM workers should be trained. Fourthly, CRM behaviors should be developed for the whole staff members. Fifthly, CRM should be carried out through systematic cooperation between related departments. To make use of the case study for CRM, the company should understand the customer and establish customer management programs to set the optimal CRM strategy and continuously pursue it according to a long-term plan. For this, according to collected information and customer data, customers should be segmented and the responsive customer system should be designed according to the differentiated strategy according to the class of the customers. In terms of the future CRM, integrated CRM is essential where the customer information gathers together in one place. As the degree of customers' expectation increases a lot, the effective way to meet the customers' expectation should be pursued. As the IT technology improved rapidly, RFID (Radio Frequency Identification) appears. On a real-time basis, information about products and customers is obtained massively in a very short time. A strategy for successful CRM promotion should be improving the organizations in charge of contacting customers, re-planning the customer management processes and establishing the integrated system with the marketing strategy to keep good relation with the customers according to a long-term plan and a proper method suitable to the market conditions and run a company-wide program. In addition, a CRM program should be continuously improved and complemented to meet the company's characteristics. Especially, a strategy for successful CRM for the medium and small sized distributors should be as follows. First, they should change their existing recognition in CRM and keep in-depth care for the customers. Second, they should benchmark the techniques of CRM from the leading companies and find out success points to use. Third, they should seek some methods best suited for their particular conditions by achieving the ideas combining their own strong points with marketing. Fourth, a CRM model should be developed that will promote relationship with individual customers just like the precedents of small sized businesses in Switzerland through small but noticeable events.

  • PDF

Game Theoretic Optimization of Investment Portfolio Considering the Performance of Information Security Countermeasure (정보보호 대책의 성능을 고려한 투자 포트폴리오의 게임 이론적 최적화)

  • Lee, Sang-Hoon;Kim, Tae-Sung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.37-50
    • /
    • 2020
  • Information security has become an important issue in the world. Various information and communication technologies, such as the Internet of Things, big data, cloud, and artificial intelligence, are developing, and the need for information security is increasing. Although the necessity of information security is expanding according to the development of information and communication technology, interest in information security investment is insufficient. In general, measuring the effect of information security investment is difficult, so appropriate investment is not being practice, and organizations are decreasing their information security investment. In addition, since the types and specification of information security measures are diverse, it is difficult to compare and evaluate the information security countermeasures objectively, and there is a lack of decision-making methods about information security investment. To develop the organization, policies and decisions related to information security are essential, and measuring the effect of information security investment is necessary. Therefore, this study proposes a method of constructing an investment portfolio for information security measures using game theory and derives an optimal defence probability. Using the two-person game model, the information security manager and the attacker are assumed to be the game players, and the information security countermeasures and information security threats are assumed as the strategy of the players, respectively. A zero-sum game that the sum of the players' payoffs is zero is assumed, and we derive a solution of a mixed strategy game in which a strategy is selected according to probability distribution among strategies. In the real world, there are various types of information security threats exist, so multiple information security measures should be considered to maintain the appropriate information security level of information systems. We assume that the defence ratio of the information security countermeasures is known, and we derive the optimal solution of the mixed strategy game using linear programming. The contributions of this study are as follows. First, we conduct analysis using real performance data of information security measures. Information security managers of organizations can use the methodology suggested in this study to make practical decisions when establishing investment portfolio for information security countermeasures. Second, the investment weight of information security countermeasures is derived. Since we derive the weight of each information security measure, not just whether or not information security measures have been invested, it is easy to construct an information security investment portfolio in a situation where investment decisions need to be made in consideration of a number of information security countermeasures. Finally, it is possible to find the optimal defence probability after constructing an investment portfolio of information security countermeasures. The information security managers of organizations can measure the specific investment effect by drawing out information security countermeasures that fit the organization's information security investment budget. Also, numerical examples are presented and computational results are analyzed. Based on the performance of various information security countermeasures: Firewall, IPS, and Antivirus, data related to information security measures are collected to construct a portfolio of information security countermeasures. The defence ratio of the information security countermeasures is created using a uniform distribution, and a coverage of performance is derived based on the report of each information security countermeasure. According to numerical examples that considered Firewall, IPS, and Antivirus as information security countermeasures, the investment weights of Firewall, IPS, and Antivirus are optimized to 60.74%, 39.26%, and 0%, respectively. The result shows that the defence probability of the organization is maximized to 83.87%. When the methodology and examples of this study are used in practice, information security managers can consider various types of information security measures, and the appropriate investment level of each measure can be reflected in the organization's budget.

Relationship of Carbohydrate and Fat Intake with Metabolic Syndrome in Korean Women: The Korea National Health and Nutrition Examination Survey (2007-2016) (한국 여성의 탄수화물/지질 섭취가 대사증후군에 미치는 영향: 국민건강영양조사(2007-2016)를 중심으로)

  • Lee, Jaesang;Kim, Yookyung;Shin, Woo-Kyoung
    • Journal of Korean Home Economics Education Association
    • /
    • v.35 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • The objective of the study was to examine the associations of dietary carbohydrate and fat intake with the prevalence of metabolic syndrome in Korean women. A cross-sectional study was employed based on data from the Korea National Health and Nutrition Examination (2007-2016). A total of 22,850 women aged 19 to 69 years were studied after excluding responses from pregnant or lactating women and those with missing metabolic values. Dietary intake data were collected with a 24-hour recall method. Dietary carbohydrate and fat intakes were divided into quintiles. After controlling for confounding variables, a multivariable logistic regression and general linear model were used. The findings indicated that HDL cholesterol levels were lower (p for trend<0.01), while triglyceride levels (p for trend=0.04), waist circumference (p for trend<0.01), and systolic blood pressure (p for trend<0.01) were higher among participants in the highest quintile of carbohydrate intake compared to those in the lowest quintile. Participants in the highest quintile of fat intake had lower waist circumference (p for trend=0.02), triglyceride level (p for trend<0.01), and systolic blood pressure (p for trend<0.01), while higher HDL cholesterol level (p for trend<0.01) compared to those in the lowest fat intake quintile. Metabolic syndrome was more likely to be present in the highest quintile of carbohydrates intake than in the lowest quintile (5th quintile vs. 1st quintile, OR: 1.32; 95% CI: 1.11 to 1.57). However, metabolic syndrome was less likely to be present in the highest quintile of fat intake than in the lowest quintile (5th quintile vs. 1st quintile, OR: 0.73; 95% CI: 0.61 to 0.86). This study revealed that high dietary carbohydrate intake and low dietary fat intake were associated with metabolic syndrome in Korean women.

A Study on the Influence of IT Education Service Quality on Educational Satisfaction, Work Application Intention, and Recommendation Intention: Focusing on the Moderating Effects of Learner Position and Participation Motivation (IT교육 서비스품질이 교육만족도, 현업적용의도 및 추천의도에 미치는 영향에 관한 연구: 학습자 직위 및 참여동기의 조절효과를 중심으로)

  • Kang, Ryeo-Eun;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.169-196
    • /
    • 2017
  • The fourth industrial revolution represents a revolutionary change in the business environment and its ecosystem, which is a fusion of Information Technology (IT) and other industries. In line with these recent changes, the Ministry of Employment and Labor of South Korea announced 'the Fourth Industrial Revolution Leader Training Program,' which includes five key support areas such as (1) smart manufacturing, (2) Internet of Things (IoT), (3) big data including Artificial Intelligence (AI), (4) information security, and (5) bio innovation. Based on this program, we can get a glimpse of the South Korean government's efforts and willingness to emit leading human resource with advanced IT knowledge in various fusion technology-related and newly emerging industries. On the other hand, in order to nurture excellent IT manpower in preparation for the fourth industrial revolution, the role of educational institutions capable of providing high quality IT education services is most of importance. However, these days, most IT educational institutions have had difficulties in providing customized IT education services that meet the needs of consumers (i.e., learners), without breaking away from the traditional framework of providing supplier-oriented education services. From previous studies, it has been found that the provision of customized education services centered on learners leads to high satisfaction of learners, and that higher satisfaction increases not only task performance and the possibility of business application but also learners' recommendation intention. However, since research has not yet been conducted in a comprehensive way that consider both antecedent and consequent factors of the learner's satisfaction, more empirical research on this is highly desirable. With the advent of the fourth industrial revolution, a rising interest in various convergence technologies utilizing information technology (IT) has brought with the growing realization of the important role played by IT-related education services. However, research on the role of IT education service quality in the context of IT education is relatively scarce in spite of the fact that research on general education service quality and satisfaction has been actively conducted in various contexts. In this study, therefore, the five dimensions of IT education service quality (i.e., tangibles, reliability, responsiveness, assurance, and empathy) are derived from the context of IT education, based on the SERVPERF model and related previous studies. In addition, the effects of these detailed IT education service quality factors on learners' educational satisfaction and their work application/recommendation intentions are examined. Furthermore, the moderating roles of learner position (i.e., practitioner group vs. manager group) and participation motivation (i.e., voluntary participation vs. involuntary participation) in relationships between IT education service quality factors and learners' educational satisfaction, work application intention, and recommendation intention are also investigated. In an analysis using the structural equation model (SEM) technique based on a questionnaire given to 203 participants of IT education programs in an 'M' IT educational institution in Seoul, South Korea, tangibles, reliability, and assurance were found to have a significant effect on educational satisfaction. This educational satisfaction was found to have a significant effect on both work application intention and recommendation intention. Moreover, it was discovered that learner position and participation motivation have a partial moderating impact on the relationship between IT education service quality factors and educational satisfaction. This study holds academic implications in that it is one of the first studies to apply the SERVPERF model (rather than the SERVQUAL model, which has been widely adopted by prior studies) is to demonstrate the influence of IT education service quality on learners' educational satisfaction, work application intention, and recommendation intention in an IT education environment. The results of this study are expected to provide practical guidance for IT education service providers who wish to enhance learners' educational satisfaction and service management efficiency.