• Title/Summary/Keyword: Big data, Hadoop

Search Result 200, Processing Time 0.025 seconds

Big Data Platform Based on Hadoop and Application to Weight Estimation of FPSO Topside

  • Kim, Seong-Hoon;Roh, Myung-Il;Kim, Ki-Su;Oh, Min-Jae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.32-40
    • /
    • 2017
  • Recently, the amount of data to be processed and the complexity thereof have been increasing due to the development of information and communication technology, and industry's interest in such big data is increasing day by day. In the shipbuilding and offshore industry also, there is growing interest in the effective utilization of data, since various and vast amounts of data are being generated in the process of design, production, and operation. In order to effectively utilize big data in the shipbuilding and offshore industry, it is necessary to store and process large amounts of data. In this study, it was considered efficient to apply Hadoop and R, which are mostly used in big data related research. Hadoop is a framework for storing and processing big data. It provides the Hadoop Distributed File System (HDFS) for storing big data, and the MapReduce function for processing. Meanwhile, R provides various data analysis techniques through the language and environment for statistical calculation and graphics. While Hadoop makes it is easy to handle big data, it is difficult to finely process data; and although R has advanced analysis capability, it is difficult to use to process large data. This study proposes a big data platform based on Hadoop for applications in the shipbuilding and offshore industry. The proposed platform includes the existing data of the shipyard, and makes it possible to manage and process the data. To check the applicability of the platform, it is applied to estimate the weights of offshore structure topsides. In this study, we store data of existing FPSOs in Hadoop-based Hortonworks Data Platform (HDP), and perform regression analysis using RHadoop. We evaluate the effectiveness of large data processing by RHadoop by comparing the results of regression analysis and the processing time, with the results of using the conventional weight estimation program.

Big data platform for health monitoring systems of multiple bridges

  • Wang, Manya;Ding, Youliang;Wan, Chunfeng;Zhao, Hanwei
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.345-365
    • /
    • 2020
  • At present, many machine leaning and data mining methods are used for analyzing and predicting structural response characteristics. However, the platform that combines big data analysis methods with online and offline analysis modules has not been used in actual projects. This work is dedicated to developing a multifunctional Hadoop-Spark big data platform for bridges to monitor and evaluate the serviceability based on structural health monitoring system. It realizes rapid processing, analysis and storage of collected health monitoring data. The platform contains offline computing and online analysis modules, using Hadoop-Spark environment. Hadoop provides the overall framework and storage subsystem for big data platform, while Spark is used for online computing. Finally, the big data Hadoop-Spark platform computational performance is verified through several actual analysis tasks. Experiments show the Hadoop-Spark big data platform has good fault tolerance, scalability and online analysis performance. It can meet the daily analysis requirements of 5s/time for one bridge and 40s/time for 100 bridges.

Advanced Resource Management with Access Control for Multitenant Hadoop

  • Won, Heesun;Nguyen, Minh Chau;Gil, Myeong-Seon;Moon, Yang-Sae
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.592-601
    • /
    • 2015
  • Multitenancy has gained growing importance with the development and evolution of cloud computing technology. In a multitenant environment, multiple tenants with different demands can share a variety of computing resources (e.g., CPU, memory, storage, network, and data) within a single system, while each tenant remains logically isolated. This useful multitenancy concept offers highly efficient, and cost-effective systems without wasting computing resources to enterprises requiring similar environments for data processing and management. In this paper, we propose a novel approach supporting multitenancy features for Apache Hadoop, a large scale distributed system commonly used for processing big data. We first analyze the Hadoop framework focusing on "yet another resource negotiator (YARN)", which is responsible for managing resources, application runtime, and access control in the latest version of Hadoop. We then define the problems for supporting multitenancy and formally derive the requirements to solve these problems. Based on these requirements, we design the details of multitenant Hadoop. We also present experimental results to validate the data access control and to evaluate the performance enhancement of multitenant Hadoop.

A Study on the Effect of the Name Node and Data Node on the Big Data Processing Performance in a Hadoop Cluster (Hadoop 클러스터에서 네임 노드와 데이터 노드가 빅 데이터처리 성능에 미치는 영향에 관한 연구)

  • Lee, Younghun;Kim, Yongil
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.68-74
    • /
    • 2017
  • Big data processing processes various types of data such as files, images, and video to solve problems and provide insightful useful information. Currently, various platforms are used for big data processing, but many organizations and enterprises are using Hadoop for big data processing due to the simplicity, productivity, scalability, and fault tolerance of Hadoop. In addition, Hadoop can build clusters on various hardware platforms and handle big data by dividing into a name node (master) and a data node (slave). In this paper, we use a fully distributed mode used by actual institutions and companies as an operation mode. We have constructed a Hadoop cluster using a low-power and low-cost single board for smooth experiment. The performance analysis of Name node is compared through the same data processing using single board and laptop as name nodes. Analysis of influence by number of data nodes increases the number of data nodes by two times from the number of existing clusters. The effect of the above experiment was analyzed.

Research on Big Data Integration Method

  • Kim, Jee-Hyun;Cho, Young-Im
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • In this paper we propose the approach for big data integration so as to analyze, visualize and predict the future of the trend of the market, and that is to get the integration data model using the R language which is the future of the statistics and the Hadoop which is a parallel processing for the data. As four approaching methods using R and Hadoop, ff package in R, R and Streaming as Hadoop utility, and Rhipe and RHadoop as R and Hadoop interface packages are used, and the strength and weakness of four methods are described and analyzed, so Rhipe and RHadoop are proposed as a complete set of data integration model. The integration of R, which is popular for processing statistical algorithm and Hadoop contains Distributed File System and resource management platform and can implement the MapReduce programming model gives us a new environment where in R code can be written and deployed in Hadoop without any data movement. This model allows us to predictive analysis with high performance and deep understand over the big data.

A Study on Big Data Platform Based on Hadoop for the Applications in Ship and Offshore Industry (조선 해양 산업에서의 응용을 위한 하둡 기반의 빅데이터 플랫폼 연구)

  • Kim, Seong-Hoon;Roh, Myung-Il;Kim, Ki-Su
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.3
    • /
    • pp.334-340
    • /
    • 2016
  • As Information Technology (IT) is developed constantly, big data is becoming important in various industries, including ship and offshore industry where a lot of data are being generated. However, it is difficult to apply big data to ship and offshore industry because there is no generalized platform for its application. Therefore, this study presents a big data platform based on the Hadoop for applications in ship and offshore industry. The Hadoop is one of the most popular big data technologies. The presented platform includes existing data of shipyard and is possible to manage and process the data. To check the applicability of the platform, it is applied to estimate the weight of offshore plant topsides. The result shows that the platform can be one of alternatives to use effectively big data in ship and offshore industry.

Hadoop System Design for Big data Processing of RFID Distribution (RFID/NFC 물류의 빅 데이터 처리를 위한 하둡 시스템의 설계)

  • Kim, Nam-Ho;Noh, Jin-Heon;Jeong, Hee-Ja
    • Smart Media Journal
    • /
    • v.2 no.3
    • /
    • pp.47-53
    • /
    • 2013
  • Recently convergence of IT in logistics system as a typical application RFID/NFC technology is being used, such as, according to the distribution of the flow is generated by a lot of big data. The Hadoop distributed system to collect data items produced by the parallel processing capabilities of logistics information and logistics information for the record management can create. Hadoop system to support the design and development of prototypes were approaching the possibility of its utilization.

  • PDF

A Study on Security Improvement in Hadoop Distributed File System Based on Kerberos (Kerberos 기반 하둡 분산 파일 시스템의 안전성 향상방안)

  • Park, So Hyeon;Jeong, Ik Rae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.5
    • /
    • pp.803-813
    • /
    • 2013
  • As the developments of smart devices and social network services, the amount of data has been exploding. The world is facing Big data era. For these reasons, the Big data processing technology which is a new technology that can handle such data has attracted much attention. One of the most representative technologies is Hadoop. Hadoop Distributed File System(HDFS) designed to run on commercial Linux server is an open source framework and can store many terabytes of data. The initial version of Hadoop did not consider security because it only focused on efficient Big data processing. As the number of users rapidly increases, a lot of sensitive data including personal information were stored on HDFS. So Hadoop announced a new version that introduces Kerberos and token system in 2009. However, this system is vulnerable to the replay attack, impersonation attack and other attacks. In this paper, we analyze these vulnerabilities of HDFS security and propose a new protocol which complements these vulnerabilities and maintains the performance of Hadoop.

Design of Distributed Hadoop Full Stack Platform for Big Data Collection and Processing (빅데이터 수집 처리를 위한 분산 하둡 풀스택 플랫폼의 설계)

  • Lee, Myeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.45-51
    • /
    • 2021
  • In accordance with the rapid non-face-to-face environment and mobile first strategy, the explosive increase and creation of many structured/unstructured data every year demands new decision making and services using big data in all fields. However, there have been few reference cases of using the Hadoop Ecosystem, which uses the rapidly increasing big data every year to collect and load big data into a standard platform that can be applied in a practical environment, and then store and process well-established big data in a relational database. Therefore, in this study, after collecting unstructured data searched by keywords from social network services based on Hadoop 2.0 through three virtual machine servers in the Spring Framework environment, the collected unstructured data is loaded into Hadoop Distributed File System and HBase based on the loaded unstructured data, it was designed and implemented to store standardized big data in a relational database using a morpheme analyzer. In the future, research on clustering and classification and analysis using machine learning using Hive or Mahout for deep data analysis should be continued.

A Study on implementation model for security log analysis system using Big Data platform (빅데이터 플랫폼을 이용한 보안로그 분석 시스템 구현 모델 연구)

  • Han, Ki-Hyoung;Jeong, Hyung-Jong;Lee, Doog-Sik;Chae, Myung-Hui;Yoon, Cheol-Hee;Noh, Kyoo-Sung
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.351-359
    • /
    • 2014
  • The log data generated by security equipment have been synthetically analyzed on the ESM(Enterprise Security Management) base so far, but due to its limitations of the capacity and processing performance, it is not suited for big data processing. Therefore the another way of technology on the big data platform is necessary. Big Data platform can achieve a large amount of data collection, storage, processing, retrieval, analysis, and visualization by using Hadoop Ecosystem. Currently ESM technology has developed in the way of SIEM (Security Information & Event Management) technology, and to implement security technology in SIEM way, Big Data platform technology is essential that can handle large log data which occurs in the current security devices. In this paper, we have a big data platform Hadoop Ecosystem technology for analyzing the security log for sure how to implement the system model is studied.