Journal of the Korea Society of Computer and Information
/
v.24
no.1
/
pp.121-128
/
2019
An Internet of Things(IoT) technology which provides intelligent services by combining context-awareness based intelligences, inter-communication is made of between things and things or between things and person through the network connected with intelligent things is spreading rapidly. Especially as this technology is converged into smart device, mobile, cloud, big data technologies, it is applied into various domains. Therefore, this is different from existing Web or Mobile Application. New types of IoT applications are emerging by adapting IoT into Web or mobile. Because IoT application is not only focused on software but also considering hardware or things aspect, there are limitations existing development process. Existing development processes don't consider analysis and design techniques considering both hardware and things. We propose not only a meta-model for development process which can support IoT application's development but also meta-models for main activities in this paper. Especially we define modeling elements by using UML's extension mechanisms, provide development process, and suggest design techniques how to apply those elements into IoT application's modeling phase. Because there are many types of IoT application's type, we propose an Android and Arduino-based on IoT application as a case study. We expect that proposed technique can be applied into many of various IoT application development and design with a form of flexible and extensible as well as main functionalities or elements are more concretely described. As a result, it brings IoT application's flexibility and the effect of quality improvement.
This study applied the web crawling technique for extracting big data news on water quality accidents in the water supply system and presented the algorithm in a procedural way to obtain accurate water quality accident news. In addition, in the case of a large-scale water quality accident, development patterns such as accident recognition, accident spread, accident response, and accident resolution appear according to the occurrence of an accident. That is, the analysis of the development of water quality accidents through key keywords and sentiment analysis for each stage was carried out in detail based on case studies, and the meanings were analyzed and derived. The proposed methodology was applied to the larval accident period of Incheon Metropolitan City in 2020 and analyzed. As a result, in a situation where the disclosure of information that directly affects consumers, such as water quality accidents, is restricted, the tone of news articles and media reports about water quality accidents with long-term damage in the event of an accident and the degree of consumer pride clearly change over time. could check This suggests the need to prepare consumer-centered policies to increase consumer positivity, although rapid restoration of facilities is very important for the development of water quality accidents from the supplier's point of view.
In the 4th industrial revolution, the field of criminal justice is paying attention to Legaltech using artificial intelligence to provide efficient legal services. This paper attempted to create a crime prediction model that can apply Recurrent Neural Network(RNN) to increase the potential for using legal technology in the domestic criminal justice field. To this end, the crime process was divided into pre, during, and post stages based on the criminal facts described in the judgment, utilizing crime script analysis techniques. In addition, at each time point, the method and evidence of crime were classified into objects, actions, and environments based on the sentence composition elements and the 8 principles of investigation. The case summary analysis framework derived from this study can contribute to establishing situational crime prevention strategies because it is easy to identify typical patterns of specific crime methods. Furthermore, the results of this study can be used as a useful reference for research on generating crime situation prediction data based on RNN models in future follow-up studies.
SARWAR, Danish;SARWAR, Bilal;RAZ, Muhammad Asif;KHAN, Hadi Hassan;MUHAMMAD, Noor;AZHAR, Usman;ZAMAN, Nadeem uz;KASI, Mumraiz Khan
The Journal of Asian Finance, Economics and Business
/
v.7
no.12
/
pp.819-829
/
2020
This empirical research is aimed at testing the relationship of the big five personality traits namely openness to experience, extraversion, consciousness, agreeableness, neuroticism, and risk aversion with the investment intention of individual investors belonging to Balochistan, Pakistan. The primary data is collected through a self-administered questionnaire (a structured form that consists of a series of closed-ended and open-ended questions) from a sample of 397 active individual investors belonging to different districts of the province. The data is empirically analyzed by applying the Partial Least Square (PLS) path modeling technique by using the estimation package available in Smart-PLS. The findings of this study suggest that all the variables are statistically significant with investors' investment intention with risk aversion as the strongest predictor. Moreover, openness to experience, extraversion, consciousness, agreeableness, and risk are significantly and positively related to an investor's investment intention, whereas neuroticism is negatively related to an investor's investment intention. The results extended by this study can be used by financial planners and investment bankers to channelize the available financial resources in diversified portfolios. The results will help financial planners to make available diverse investment alternatives for investors in Balochistan, thus catering to their unique needs. Academia must offer courses on contemporary finance paradigm based on behavioral finance to enable future business graduates to make wise financial decisions.
The purpose of this study is to understand the public needs for AI education actively promoted and supported by the current government. In doing so, 11 metropolitan news articles and Twitter posts regarding AI education that have been posted from January 1, 2018 to December 31, 2019 were collected. Then, word frequency analysis using TF(Term Frequency) method and LDA(Latent Dirichlet Allocation) method of topic modeling analysis were conducted. The topics of the news articles turn out to be a macroscopic policy support such as 'training female manpower in the AI field' and 'curriculum reform of university and K-12', whereas the topics of twitter delineate more detailed social perception on future society, such as future competencies and pedagogical methods, including 'coexistence with intelligent robots', 'coding education', and 'humane education competence development'. The findings are expected to be used to suggest the implications for the composition and management of AI curriculum as well as the basic framework of human resources development in the future industry.
This study identifies the trend of Korean accounting researches on profit adjustment. We analyzed the abstract of accounting research articles published in Korean Citation Index (KCI) by using text mining technique. Among papers whose themes were profit adjustment, topics were divided into 4 parts: (i) Auditing and audit reports, (ii) corporate taxes and debt ratios, (iii) general management strategy of companies, and (iv) financial statements and accounting principles. Unlike the prediction that financial statements and accounting principles would be the main topic, auditing was analyzed as the most studied area. We analyzed topic trends based on the number of papers by topic, and could figure out the impact of K-IFRS introduction on profit adjustment research. By using Big Data method, this study enabled the division of research themes that have not been available in the past studies. This study enables the policy makers and business managers to learn about additional considerations in addition to accounting principles related to profit adjustment.
This study conducted a big data analysis on news to identify the agenda of media literacy, which has been socially discussed, and on which relevant policy directions will be proposed. To this end 1,336 articles from January 1, 2019 to September 30, 2020 were collected and a topic modeling analysis was conducted according to four periods. Five topics for each period were derived through the analysis, and implications based on the results are as follows. First, the government should implement a nation-level systematic approach to media literacy education according to life cycle stages to generate economic and cultural value. Second, local communities and schools should provide systematic support and education guidance activities to ensure a sustainable ecosystem for media literacy and prevent an educational gap and loss in learning. Third, efforts should be made in various aspects to minimize the side effects resulting from constantly providing media literacy education; furthermore a culture of desirable media application should be established. Finally, a research environment for scientific research on media literacy, active exchange of experience and value obtained in the field, and long-term accumulation of research results should be encouraged to develop a robust knowledge exchange culture.
Journal of the Korean Society of Marine Environment & Safety
/
v.29
no.3
/
pp.281-287
/
2023
Establishing a ship's passage plan is an essential step before it starts to sail. The research related to the automatic generation of ship passage plans is attracting attention because of the development of maritime autonomous surface ships. In coastal water navigation, the land, islands, and navigation rules need to be considered. From the path planning algorithm's perspective, a ship's passage planning is a global path-planning problem. Because conventional global path-planning methods such as Dijkstra and A* are time-consuming owing to the processes such as environmental modeling, it is difficult to modify a ship's passage plan during a voyage. Therefore, the D* algorithm was used to address these problems. The starting point was near Busan New Port, and the destination was Ulsan Port. The navigable area was designated based on a combination of the ship trajectory data and grid in the target area. The initial path plan generated using the D* algorithm was analyzed with 33 waypoints and a total distance of 113.946 km. The final path plan was simplified using the Douglas-Peucker algorithm. It was analyzed with a total distance of 110.156 km and 10 waypoints. This is approximately 3.05% less than the total distance of the initial passage plan of the ship. This study demonstrated the feasibility of automatically generating a path plan in coastal navigation for maritime autonomous surface ships using the D* algorithm. Using the shortest distance-based path planning algorithm, the ship's fuel consumption and sailing time can be minimized.
The purpose of this study is to explain and predict trends the AI development process based on AI technology patents (total) and AI reporting frames in major newspapers. To that end, a summary of South Korean and U.S. technology patents filed over the past nine years and the AI (Artificial Intelligence) news text of major domestic newspapers were analyzed. In this study, Topic Modeling and Time Series Return Analysis using Big Data were used, and additional network agenda correlation and regression analysis techniques were used. First, the results of this study were confirmed in the order of artificial intelligence and algorithm 5G (hot AI technology) in the AI technical patent summary, and in the news report, AI industrial application and data analysis market application were confirmed in the order, indicating the trend of reporting on AI's social culture. Second, as a result of the time series regression analysis, the social and cultural use of AI and the start of industrial application were derived from the rising trend topics. The downward trend was centered on system and hardware technology. Third, QAP analysis using correlation and regression relationship showed a high correlation between AI technology patents and news reporting frames. Through this, AI technology patents and news reporting frames have tended to be socially constructed by the determinants of media discourse in AI development.
KIPS Transactions on Software and Data Engineering
/
v.8
no.12
/
pp.491-498
/
2019
Digital twin is a technology that virtualizes physical objects of the real world on a computer. It is used by collecting sensor data through IoT, and using the collected data to connect physical objects and virtual objects in both directions. It has an advantage of minimizing risk by tuning an operation of virtual model through simulation and responding to varying environment by exploiting experiments in advance. Recently, artificial intelligence and machine learning technologies have been attracting attention, so that tendency to virtualize a behavior of physical objects, observe virtual models, and apply various scenarios is increasing. In particular, recognition of each robot's motion is needed to build digital twin for co-robot which is a heart of industry 4.0 factory automation. Compared with modeling based research for recognizing motion of co-robot, there are few attempts to predict motion based on sensor data. Therefore, in this paper, an experimental environment for collecting current and inertia data in co-robot to detect the motion of the robot is built, and a motion prediction model based on the collected sensor data is proposed. The proposed method classifies the co-robot's motion commands into 9 types based on joint position and uses current and inertial sensor values to predict them by accumulated learning. The data used for accumulating learning is the sensor values that are collected when the co-robot operates with margin in input parameters of the motion commands. Through this, the model is constructed to predict not only the nine movements along the same path but also the movements along the similar path. As a result of learning using SVM, the accuracy, precision, and recall factors of the model were evaluated as 97% on average.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.