• Title/Summary/Keyword: Big Data Based Modeling

Search Result 185, Processing Time 0.028 seconds

A Meta-Model for Development Process of IoT Application by Using UML

  • Cho, Eun-Sook;Song, Chee-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.121-128
    • /
    • 2019
  • An Internet of Things(IoT) technology which provides intelligent services by combining context-awareness based intelligences, inter-communication is made of between things and things or between things and person through the network connected with intelligent things is spreading rapidly. Especially as this technology is converged into smart device, mobile, cloud, big data technologies, it is applied into various domains. Therefore, this is different from existing Web or Mobile Application. New types of IoT applications are emerging by adapting IoT into Web or mobile. Because IoT application is not only focused on software but also considering hardware or things aspect, there are limitations existing development process. Existing development processes don't consider analysis and design techniques considering both hardware and things. We propose not only a meta-model for development process which can support IoT application's development but also meta-models for main activities in this paper. Especially we define modeling elements by using UML's extension mechanisms, provide development process, and suggest design techniques how to apply those elements into IoT application's modeling phase. Because there are many types of IoT application's type, we propose an Android and Arduino-based on IoT application as a case study. We expect that proposed technique can be applied into many of various IoT application development and design with a form of flexible and extensible as well as main functionalities or elements are more concretely described. As a result, it brings IoT application's flexibility and the effect of quality improvement.

Analysis of articles on water quality accidents in the water distribution networks using big data topic modelling and sentiment analysis (빅데이터 토픽모델링과 감성분석을 활용한 물공급과정에서의 수질사고 기사 분석)

  • Hong, Sung-Jin;Yoo, Do-Guen
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1235-1249
    • /
    • 2022
  • This study applied the web crawling technique for extracting big data news on water quality accidents in the water supply system and presented the algorithm in a procedural way to obtain accurate water quality accident news. In addition, in the case of a large-scale water quality accident, development patterns such as accident recognition, accident spread, accident response, and accident resolution appear according to the occurrence of an accident. That is, the analysis of the development of water quality accidents through key keywords and sentiment analysis for each stage was carried out in detail based on case studies, and the meanings were analyzed and derived. The proposed methodology was applied to the larval accident period of Incheon Metropolitan City in 2020 and analyzed. As a result, in a situation where the disclosure of information that directly affects consumers, such as water quality accidents, is restricted, the tone of news articles and media reports about water quality accidents with long-term damage in the event of an accident and the degree of consumer pride clearly change over time. could check This suggests the need to prepare consumer-centered policies to increase consumer positivity, although rapid restoration of facilities is very important for the development of water quality accidents from the supplier's point of view.

AI Crime Prediction Modeling Based on Judgment and the 8 Principles (판결문과 8하원칙에 기반한 인공지능 범죄 예측 모델링)

  • Hye-sung Jung;Eun-bi Cho;Jeong-hyeon Chang
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.99-105
    • /
    • 2023
  • In the 4th industrial revolution, the field of criminal justice is paying attention to Legaltech using artificial intelligence to provide efficient legal services. This paper attempted to create a crime prediction model that can apply Recurrent Neural Network(RNN) to increase the potential for using legal technology in the domestic criminal justice field. To this end, the crime process was divided into pre, during, and post stages based on the criminal facts described in the judgment, utilizing crime script analysis techniques. In addition, at each time point, the method and evidence of crime were classified into objects, actions, and environments based on the sentence composition elements and the 8 principles of investigation. The case summary analysis framework derived from this study can contribute to establishing situational crime prevention strategies because it is easy to identify typical patterns of specific crime methods. Furthermore, the results of this study can be used as a useful reference for research on generating crime situation prediction data based on RNN models in future follow-up studies.

Relationship of the Big Five Personality Traits and Risk Aversion with Investment Intention of Individual Investors

  • SARWAR, Danish;SARWAR, Bilal;RAZ, Muhammad Asif;KHAN, Hadi Hassan;MUHAMMAD, Noor;AZHAR, Usman;ZAMAN, Nadeem uz;KASI, Mumraiz Khan
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.819-829
    • /
    • 2020
  • This empirical research is aimed at testing the relationship of the big five personality traits namely openness to experience, extraversion, consciousness, agreeableness, neuroticism, and risk aversion with the investment intention of individual investors belonging to Balochistan, Pakistan. The primary data is collected through a self-administered questionnaire (a structured form that consists of a series of closed-ended and open-ended questions) from a sample of 397 active individual investors belonging to different districts of the province. The data is empirically analyzed by applying the Partial Least Square (PLS) path modeling technique by using the estimation package available in Smart-PLS. The findings of this study suggest that all the variables are statistically significant with investors' investment intention with risk aversion as the strongest predictor. Moreover, openness to experience, extraversion, consciousness, agreeableness, and risk are significantly and positively related to an investor's investment intention, whereas neuroticism is negatively related to an investor's investment intention. The results extended by this study can be used by financial planners and investment bankers to channelize the available financial resources in diversified portfolios. The results will help financial planners to make available diverse investment alternatives for investors in Balochistan, thus catering to their unique needs. Academia must offer courses on contemporary finance paradigm based on behavioral finance to enable future business graduates to make wise financial decisions.

An analysis of public perception on Artificial Intelligence(AI) education using Big Data: Based on News articles and Twitter (빅데이터 분석을 통해 본 AI교육에 대한 사회적 인식: 뉴스기사와 트위터를 중심으로)

  • Lee, Sang-Soog;Yoo, Inhyeok;Kim, Jinhee
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.9-16
    • /
    • 2020
  • The purpose of this study is to understand the public needs for AI education actively promoted and supported by the current government. In doing so, 11 metropolitan news articles and Twitter posts regarding AI education that have been posted from January 1, 2018 to December 31, 2019 were collected. Then, word frequency analysis using TF(Term Frequency) method and LDA(Latent Dirichlet Allocation) method of topic modeling analysis were conducted. The topics of the news articles turn out to be a macroscopic policy support such as 'training female manpower in the AI field' and 'curriculum reform of university and K-12', whereas the topics of twitter delineate more detailed social perception on future society, such as future competencies and pedagogical methods, including 'coexistence with intelligent robots', 'coding education', and 'humane education competence development'. The findings are expected to be used to suggest the implications for the composition and management of AI curriculum as well as the basic framework of human resources development in the future industry.

Topic Modeling of Profit Adjustment Research Trend in Korean Accounting (텍스트 마이닝을 이용한 이익조정 연구동향 토픽모델링)

  • Kim, JiYeon;Na, HongSeok;Park, Kyung Hwan
    • Journal of Digital Convergence
    • /
    • v.19 no.1
    • /
    • pp.125-139
    • /
    • 2021
  • This study identifies the trend of Korean accounting researches on profit adjustment. We analyzed the abstract of accounting research articles published in Korean Citation Index (KCI) by using text mining technique. Among papers whose themes were profit adjustment, topics were divided into 4 parts: (i) Auditing and audit reports, (ii) corporate taxes and debt ratios, (iii) general management strategy of companies, and (iv) financial statements and accounting principles. Unlike the prediction that financial statements and accounting principles would be the main topic, auditing was analyzed as the most studied area. We analyzed topic trends based on the number of papers by topic, and could figure out the impact of K-IFRS introduction on profit adjustment research. By using Big Data method, this study enabled the division of research themes that have not been available in the past studies. This study enables the policy makers and business managers to learn about additional considerations in addition to accounting principles related to profit adjustment.

News Big Data Analysis of 'Media Literacy' Using Topic Modeling Analysis (미디어 리터러시 뉴스 빅데이터 분석: 토픽 모델링 분석을 중심으로)

  • Han, Songlee;Kim, Taejong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.4
    • /
    • pp.26-37
    • /
    • 2021
  • This study conducted a big data analysis on news to identify the agenda of media literacy, which has been socially discussed, and on which relevant policy directions will be proposed. To this end 1,336 articles from January 1, 2019 to September 30, 2020 were collected and a topic modeling analysis was conducted according to four periods. Five topics for each period were derived through the analysis, and implications based on the results are as follows. First, the government should implement a nation-level systematic approach to media literacy education according to life cycle stages to generate economic and cultural value. Second, local communities and schools should provide systematic support and education guidance activities to ensure a sustainable ecosystem for media literacy and prevent an educational gap and loss in learning. Third, efforts should be made in various aspects to minimize the side effects resulting from constantly providing media literacy education; furthermore a culture of desirable media application should be established. Finally, a research environment for scientific research on media literacy, active exchange of experience and value obtained in the field, and long-term accumulation of research results should be encouraged to develop a robust knowledge exchange culture.

Passage Planning in Coastal Waters for Maritime Autonomous Surface Ships using the D* Algorithm

  • Hyeong-Tak Lee;Hey-Min Choi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.3
    • /
    • pp.281-287
    • /
    • 2023
  • Establishing a ship's passage plan is an essential step before it starts to sail. The research related to the automatic generation of ship passage plans is attracting attention because of the development of maritime autonomous surface ships. In coastal water navigation, the land, islands, and navigation rules need to be considered. From the path planning algorithm's perspective, a ship's passage planning is a global path-planning problem. Because conventional global path-planning methods such as Dijkstra and A* are time-consuming owing to the processes such as environmental modeling, it is difficult to modify a ship's passage plan during a voyage. Therefore, the D* algorithm was used to address these problems. The starting point was near Busan New Port, and the destination was Ulsan Port. The navigable area was designated based on a combination of the ship trajectory data and grid in the target area. The initial path plan generated using the D* algorithm was analyzed with 33 waypoints and a total distance of 113.946 km. The final path plan was simplified using the Douglas-Peucker algorithm. It was analyzed with a total distance of 110.156 km and 10 waypoints. This is approximately 3.05% less than the total distance of the initial passage plan of the ship. This study demonstrated the feasibility of automatically generating a path plan in coastal navigation for maritime autonomous surface ships using the D* algorithm. Using the shortest distance-based path planning algorithm, the ship's fuel consumption and sailing time can be minimized.

A Study on AI Evolution Trend based on Topic Frame Modeling (인공지능발달 토픽 프레임 연구 -계열화(seriation)와 통합화(skeumorph)의 사회구성주의 중심으로-)

  • Kweon, Sang-Hee;Cha, Hyeon-Ju
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.66-85
    • /
    • 2020
  • The purpose of this study is to explain and predict trends the AI development process based on AI technology patents (total) and AI reporting frames in major newspapers. To that end, a summary of South Korean and U.S. technology patents filed over the past nine years and the AI (Artificial Intelligence) news text of major domestic newspapers were analyzed. In this study, Topic Modeling and Time Series Return Analysis using Big Data were used, and additional network agenda correlation and regression analysis techniques were used. First, the results of this study were confirmed in the order of artificial intelligence and algorithm 5G (hot AI technology) in the AI technical patent summary, and in the news report, AI industrial application and data analysis market application were confirmed in the order, indicating the trend of reporting on AI's social culture. Second, as a result of the time series regression analysis, the social and cultural use of AI and the start of industrial application were derived from the rising trend topics. The downward trend was centered on system and hardware technology. Third, QAP analysis using correlation and regression relationship showed a high correlation between AI technology patents and news reporting frames. Through this, AI technology patents and news reporting frames have tended to be socially constructed by the determinants of media discourse in AI development.

Development of Joint-Based Motion Prediction Model for Home Co-Robot Using SVM (SVM을 이용한 가정용 협력 로봇의 조인트 위치 기반 실행동작 예측 모델 개발)

  • Yoo, Sungyeob;Yoo, Dong-Yeon;Park, Ye-Seul;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.491-498
    • /
    • 2019
  • Digital twin is a technology that virtualizes physical objects of the real world on a computer. It is used by collecting sensor data through IoT, and using the collected data to connect physical objects and virtual objects in both directions. It has an advantage of minimizing risk by tuning an operation of virtual model through simulation and responding to varying environment by exploiting experiments in advance. Recently, artificial intelligence and machine learning technologies have been attracting attention, so that tendency to virtualize a behavior of physical objects, observe virtual models, and apply various scenarios is increasing. In particular, recognition of each robot's motion is needed to build digital twin for co-robot which is a heart of industry 4.0 factory automation. Compared with modeling based research for recognizing motion of co-robot, there are few attempts to predict motion based on sensor data. Therefore, in this paper, an experimental environment for collecting current and inertia data in co-robot to detect the motion of the robot is built, and a motion prediction model based on the collected sensor data is proposed. The proposed method classifies the co-robot's motion commands into 9 types based on joint position and uses current and inertial sensor values to predict them by accumulated learning. The data used for accumulating learning is the sensor values that are collected when the co-robot operates with margin in input parameters of the motion commands. Through this, the model is constructed to predict not only the nine movements along the same path but also the movements along the similar path. As a result of learning using SVM, the accuracy, precision, and recall factors of the model were evaluated as 97% on average.