• 제목/요약/키워드: Bifunctional receptor

검색결과 12건 처리시간 0.022초

Monoterpene 향료의 화학구조와 Olfaction과의 구조활성 상관작용 (Bifuntional Derivatives of the Monoterpene Odorants and Olfaction - The Structure-Activity-Relationships between Odorants and Olfaction -)

  • 유충규
    • 한국식품위생안전성학회지
    • /
    • 제2권2호
    • /
    • pp.75-81
    • /
    • 1987
  • Bifunctional monoterpene 유도체의 향의 유무는 분자내에 존재하는 두 개의 관능기인, proton donor(AH)와 proton acceptor(B)가 olfaction과 구조활성 상호작용(SAR)과 밀접한 관계가 있다. 일반적으로 Ohloff가설에 의하면, p-menthane monoterpene 분자내의 AH와 B의 입체배위적 최소거리가 3${\AA}$ 이하인 경우 향을 갖고, 3${\AA}$ 이상인 경우는 향을 갖지 않는다. Bifunctional pinanone, thujane, carane, carvomenthone 및 기타 menthone 유도체 등을 이용하여 이 가설을 확대 연구하였다. Bifunctional monoterpene인 (원문이미지참조) 등은 분자내에 각각 AH (OH 혹은 COOH)와 B (C=O)의 입체배위적 최소 거리가 항상 3${\AA}$ 이하여서 향을 가지며, 이들은 olfactory three point attachment에 의한 구조활성 상관관계를 가지는 것으로 사료된다. 상기 화합물의 proton donor인 OH, 혹은 COOH가 각각 acetylation이나 methylation되는 경우에는 proton donor로서의 기능 상실로 향이 사라지게 되었다.

  • PDF

Immobilization and Characterization of a Liposome-Mediated Reconstituted Nicotinic Acetylcholine Receptor

  • Suh, Jeong-Ihn;Palk, Bo-Hyun;Oh, Se-Zu;Suh, Jung-Hun;Cho, Key-Seung;Palk, Young-Ki
    • BMB Reports
    • /
    • 제28권2호
    • /
    • pp.155-161
    • /
    • 1995
  • A nicotinic acetylcholine receptor (nAchR) isolated from the electric tissues of Torpedo californica has been reconstituted into a vesicle comprising a bifunctional azo-ligand (Bae 1) compound, and a liposome containing phospholipids and cholesterol (1 : 1, w/w). The liposome-mediated reconstituted receptor showed a concentration-dependent response to cholinergic drugs in a lithium ion flux assay. This liposome-mediated reconstituted nAchR was immobilized onto an electrode using various synthetic polymers which were tested for their response to the cholinergic ligands. The immobilized nAchR not only exhibited a linear response to a wide range of cholinergic ligand concentrations but also retained an operational stability which lasted for longer than 6 days. Thus, this result provides a basis for application of the immobilized nAchR-based biosensor in detecting cholinergic ligands in vitro.

  • PDF

Streptomyces 배양액에서의 Interleukin-1 유사물질의 동정 (Identification of Interleukin-l Like Material in Streptornyces Culture Supernatant)

  • 남명수;배윤수;윤도영;남경수;최인성;정태화
    • 한국미생물·생명공학회지
    • /
    • 제21권2호
    • /
    • pp.144-149
    • /
    • 1993
  • We have identified a T cell-activating material in the culture supernatant of Streptomyces species. The factor in microbial culture supernatant (MCS) induced thymocyte proliferation in a does dependent fashion and it could be detected by immunoblot analysis using anti-interleukin-1(IL-1) antibody. The factor in MCS was slightly larger(about 21 kd) in its molecular weight than IL-1 on SDS-PAGE. When 125I-MCS was covalently coupled with homo-bifunctional cross-linking agent, disuccinimidyl-propionate to IL-1 receptor(IL-1R) on mouse thymoma cell(EL-4) and immunoprecipitated with anti-IL-1R antibody the molecular weight of this complex of 110 kd was observed.

  • PDF

Streptavidin이 융합된 DR4 항원에 특이적인 single-chain Fv 항체의 개발 (The development of anti-DR4 single-chain Fv (ScFv) antibody fused to Streptavidin)

  • 김서우;우상욱;김진규
    • 미생물학회지
    • /
    • 제54권4호
    • /
    • pp.330-342
    • /
    • 2018
  • Streptavidin (STR)과 Biotin system은 Biotin의 Streptavidin에 대한 높은 비공유 친화력(non-covalent affinity; $K_D=10^{-14}M$)과 4 Biotin 결합부위를 갖는 Streptavidin의 tetramer 구조로 인해 복수의 항원결합부위 및 복수의 항원특이성을 갖는 항체를 제조할 수 있기 때문에 가장 활발하게 연구되고 있다. 이 system을 활용하기 위해 우리는 Streptomyces avidinii 염색체 DNA로부터 PCR을 통해 Streptavidin (STR) 유전자를 증폭하고 이를 TRAIL (tumor necrosis factor ${\alpha}$ related apoptosis induced ligand) receptor인 death receptor 4 (DR4)에 특이적으로 결합하는 hAY4 single-chain Fv 항체유전자에 융합시켰다. 대장균에서 발현시킨 STR에 융합된 hAY4 ScFv (hAY4-STR) 항체는 가열시킨 SDS-PAGE에서 43 kDa monomer를 나타내었다. 그러나 가열하지 않은 SDS-PAGE와 Size-exclusion chromatography에서는 tetramer인 172 kDa을 나타내었는데 이는 hAY4 ScFv-STR 항체가 STR의 자연적인 비공유결합에 의해 유도된 tetramer를 형성하고 있음을 나타내고 있다. 본 융합 단백질은 Ouchterlony assay와 ELISA에서 보여주는 것처럼 자연 Streptavidin과 유사한 Biotin 결합력을 유지하고 있었다. ELISA와 Westernblot을 이용하여 정제된 hAY4-STR 융합항체의 DR4 항원결합력 또한 확인하였다. 게다가 표면 플라즈몬 공명(surface plasmon resonance) 분석에서 hAY4 ScFv-STR tetramer는 tetramerization에 의해 hAY4 ScFv monomer보다 60배 더 높은 항원결합력을 나타내었다. 요약하면 hAY4 ScFv-STR 융합단백질은 E. coli에서 soluble tetramer로 성공적으로 발현 및 정제되었으며 Biotin과 DR4 항원에 동시에 결합함을 보여 주었다. 이는 bifunctional and tetrameric ScFv 항체를 제조 할 수 있음을 제시해 주고 있다.

Inhibition of Transient Receptor Potential Melastain 7 Enhances Apoptosis Induced by TRAIL in PC-3 cells

  • Lin, Chang-Ming;Ma, Ji-Min;Zhang, Li;Hao, Zong-Yao;Zhou, Jun;Zhou, Zhen-Yu;Shi, Hao-Qiang;Zhang, Yi-Fei;Shao, En-Ming;Liang, Chao-Zhao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권10호
    • /
    • pp.4469-4475
    • /
    • 2015
  • Transient receptor potential melastain 7 (TRPM7) is a bifunctional protein with dual structure of both ion channel and protein kinase, participating in a wide variety of diseases including cancer. Recent researches have reported the mechanism of TRPM7 in human cancers. However, the correlation between TRPM7 and prostate cancer (PCa) has not been well studied. The objective of this study was to investigate the potential the role of TRPM7 in the apoptosis of PC-3 cells, which is the key cell of advanced metastatic PCa. In this study, we demonstrated the influence and potential function of TRPM7 on the PC-3 cells apoptosis induced by TNF-related apoptosis inducing-ligand (TRAIL). The study also found a novel up-regulated expression of TRPM7 in PC-3 cells after treating with TRAIL. Suppression of TRPM7 by TRPM7 non-specific inhibitors ($Gd^{3+}$ or 2-aminoethoxy diphenylborate (2-APB) ) not only markedly eliminated TRPM7 expression level, but also increased the apoptosis of TRAIL-treated PC-3 cells, which may be regulated by the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway accompany with up-regulated expression of cleaved Caspase-3, (TRAIL-receptor 1, death receptors 4) DR4, and (TRAIL-receptor 2, death receptors 5) DR5. Taken together, our findings strongly suggested that TRPM7 was involved in the apoptosis of PC-3 cells induced by TRAIL, indicating that TRPM7 may be applied as a therapeutic target for PCa.

암세포 내로의 약물 전달 증진 목적의 신규 소마토스타틴 수용체 타겟리간드 합성 및 평가 (Synthesis and Evaluation of a Ligand Targeting the Somatostatin Receptor for Drug Delivery to Tumor Cell)

  • 최선주;홍영돈;이소영;정성희
    • 방사선산업학회지
    • /
    • 제9권4호
    • /
    • pp.193-198
    • /
    • 2015
  • Most of targeted therapies block the action of certain enzymes, proteins, or other molecules involved in the growth and spread of cancer cells to produce its cytotoxic effect. Either small molecule drugs or monoclonal antibodies are mostly used in targeted therapies. Unfortunately, targeted therapy has a certain degree of unwanted side effect like other cytotoxicity inducing chemotherapies. To overcome and to reduce unwanted side effects during a cancer therapy, recently radiopeptide therapies has got the worlds' attraction for the tumor targeting modalities due to its beneficial effect on less side effect compared to cytotoxic chemotherapies. Among radiopeptide therapies, $^{177}Lu$-DOTATATE is a major modality as an effective one invented so far in treating neuroendocrine tumor (NET) and it has been in clinical trials at least one decade. Although it does have rather effective therapeutic effect on NET, it has less effective in rather large solid tumor. There are many ways to improve or increase therapeutic effect of radiopeptide are a finding the potent small molecules to target the tumor site selectively, or a labeling with radioisotope of emitting high energy, or an improving its biological half-life by introducing different moieties to increase lipophilicity. Present study was focus to increase a biological half-life of radio somatostatin which will target the somatostatin receptor by altering the bifunctional chelator (BFCA) by introducing lipophilic moiety to the somatostatin, which would make the labeled peptide stay longer in the tumor site and thus it can intensify the therapeutic effect on tumor cell itself and around tissues.