• 제목/요약/키워드: Bifilar winding

검색결과 13건 처리시간 0.021초

Design Methodology for Transformers Including Integrated and Center-tapped Structures for LLC Resonant Converters

  • Jung, Jee-Hoon;Choi, Jong-Moon;Kwon, Joong-Gi
    • Journal of Power Electronics
    • /
    • 제9권2호
    • /
    • pp.215-223
    • /
    • 2009
  • A design methodology for transformers including integrated and center-tapped structures for LLC resonant converters is proposed. In the LLC resonant converter, the resonant inductor in the primary side can be merged in the transformer as a leakage inductance. And, the absence of the secondary filter inductor creates low voltage stress on the secondary rectifiers and is cost-effective. A center-tapped structure of the transformer secondary side is widely used in commercial applications because of its higher efficiency and lower cost than full-bridge structures in the rectifying stages. However, this transformer structure has problems of resonance imbalance and transformer inefficiency caused by leakage inductance imbalance in the secondary side and the position of the air-gap in the transformer, respectively. In this paper, gain curves and soft-switching conditions are derived by first harmonic approximation (FHA) and operating circuit simulation. In addition, the effects of the transformer including integrated and center-tapped structures are analyzed by new FHA models and simulations to obtain an optimal design. Finally, the effects of the air-gap position are analyzed by an electromagnetic field simulator. The proposed analysis and design are verified by experimental results with a 385W LLC resonant converter.

YBCO Coated Conductor의 과전류 특성해석 (Analysis of Over-current Characteristics in YBCO Coated Conductor)

  • 이찬주;남관우;강형구;고태국;석복렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.693-694
    • /
    • 2006
  • In order to develop a high temperature superconducting(HTS) coil for the fault current limiter(FCL), the over-current characteristics in YBCO coated conductor(CC) with Ni-W alloy substrate are analyzed. The HTS wire is wound by bifilar winding method for resistive current limitation and it is operated in 65K sub-cooled nitrogen. In order to analyze the resistance and the temperature characteristics of the CC wire, an analysis program is developed considering all the composition materials except the buffer layer. Using this program, the temperature rise, the resistance development and the current limitation of CC are calculated depending on the applied voltage and the stabilizer materials. According to the analysis results, under the temperature restriction of 300K, the maximum voltage per meter is determined as 40V/m if the stabilizer is $25{\mu}m$ thick stainless steel at each side. Finally, the wire length needed for the distribution level HTS FCL is estimated.

  • PDF

13.2kV/630A급 고온초전도 한류코일 개발 (Development of 13.2kV/630A High-Tc Superconducting Fault Current Limiting Coil)

  • 이찬주;강형구;남관우;고태국;석복렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.943-944
    • /
    • 2007
  • In this paper, the development and the test of 13.2kV/630A high-Tc superconducting fault current limiting coil are described. The fault current limiting coil made of Coated Conductor (CC) was fabricated with bifilar winding method for non-inductive characteristics and tested in the distribution power system level in Dec. 2006. In order to determine the length of the superconducting coil, applied voltage per unit length(V/m) was studied analytically and it was verified through experiments. For the volume minimization, the coil was designed with concentrical arrangement method. The short-circuit test was performed with the prospective fault current of asymmetrical 10kA whose maximum fault current was $30kA_{peak}$. In the test, the voltage drop and the current of the coil were measured and the resistance of the coil was obtained. Also, the temperature rise of the coil was calculated with the relationship between the resistance and the temperature of CC. In this paper, the experimental results are analyzed and compared with the simulation.

  • PDF