• 제목/요약/키워드: Bidirectional LSTM Neural Network

검색결과 50건 처리시간 0.026초

양방향 LSTM 순환신경망 기반 주가예측모델 (Stock Prediction Model based on Bidirectional LSTM Recurrent Neural Network)

  • 주일택;최승호
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권2호
    • /
    • pp.204-208
    • /
    • 2018
  • 본 논문에서는 시계열 데이터인 주가의 변동 패턴을 학습하고, 주가 가격을 예측하기 적합한 주가 예측 딥러닝 모델을 제시하고 평가하였다. 일반신경망에 시계열 개념이 추가되어 은닉계층에 이전 정보를 기억시킬 수 있는 순환신경망이 시계열 데이터인 주가 예측 모델로 적합하다. 순환신경망에서 나타나는 기울기 소멸문제를 해결하며, 장기의존성을 유지하기 위하여, 순환신경망의 내부에 작은 메모리를 가진 LSTM을 사용한다. 또한, 순환신경망의 시계열 데이터의 직전 패턴 기반으로만 학습하는 경향을 보이는 한계를 해결하기 위하여, 데이터의 흐름의 역방향에 은닉계층이 추가되는 양방향 LSTM 순환신경망을 이용하여 주가예측 모델을 구현하였다. 실험에서는 제시된 주가 예측 모델에 텐서플로우를 이용하여 주가와 거래량을 입력 값으로 학습을 하였다. 주가예측의 성능을 평가하기 위해서, 실제 주가와 예측된 주가 간의 평균 제곱근 오차를 구하였다. 실험결과로는 단방향 LSTM 순환신경망보다, 양방향 LSTM 순환신경망을 이용한 주가예측 모델이 더 작은 오차가 발생하여 주가 예측 정확성이 향상되었다.

Cross-Domain Text Sentiment Classification Method Based on the CNN-BiLSTM-TE Model

  • Zeng, Yuyang;Zhang, Ruirui;Yang, Liang;Song, Sujuan
    • Journal of Information Processing Systems
    • /
    • 제17권4호
    • /
    • pp.818-833
    • /
    • 2021
  • To address the problems of low precision rate, insufficient feature extraction, and poor contextual ability in existing text sentiment analysis methods, a mixed model account of a CNN-BiLSTM-TE (convolutional neural network, bidirectional long short-term memory, and topic extraction) model was proposed. First, Chinese text data was converted into vectors through the method of transfer learning by Word2Vec. Second, local features were extracted by the CNN model. Then, contextual information was extracted by the BiLSTM neural network and the emotional tendency was obtained using softmax. Finally, topics were extracted by the term frequency-inverse document frequency and K-means. Compared with the CNN, BiLSTM, and gate recurrent unit (GRU) models, the CNN-BiLSTM-TE model's F1-score was higher than other models by 0.0147, 0.006, and 0.0052, respectively. Then compared with CNN-LSTM, LSTM-CNN, and BiLSTM-CNN models, the F1-score was higher by 0.0071, 0.0038, and 0.0049, respectively. Experimental results showed that the CNN-BiLSTM-TE model can effectively improve various indicators in application. Lastly, performed scalability verification through a takeaway dataset, which has great value in practical applications.

Bidirectional LSTM-CRF 모델을 이용한 멘션탐지 (Mention Detection using Bidirectional LSTM-CRF Model)

  • 박천음;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.224-227
    • /
    • 2015
  • 상호참조해결은 특정 개체에 대해 다르게 표현한 단어들을 서로 연관지어 주며, 이러한 개체에 대해 표현한 단어들을 멘션(mention)이라 하며, 이런 멘션을 찾아내는 것을 멘션탐지(mention detection)라 한다. 멘션은 명사나 명사구를 기반으로 정의되며, 명사구의 경우에는 수식어를 포함하기 때문에 멘션탐지를 순차 데이터 문제(sequence labeling problem)로 정의할 수 있다. 순차 데이터 문제에는 Recurrent Neural Network(RNN) 종류의 모델을 적용할 수 있으며, 모델들은 Long Short-Term Memory(LSTM) RNN, LSTM Recurrent CRF(LSTM-CRF), Bidirectional LSTM-CRF(Bi-LSTM-CRF) 등이 있다. LSTM-RNN은 기존 RNN의 그레디언트 소멸 문제(vanishing gradient problem)를 해결하였으며, LSTM-CRF는 출력 결과에 의존성을 부여하여 순차 데이터 문제에 더욱 최적화 하였다. Bi-LSTM-CRF는 과거입력자질과 미래입력자질을 함께 학습하는 방법으로 최근에 가장 좋은 성능을 보이고 있다. 이에 따라, 본 논문에서는 멘션탐지에 Bi-LSTM-CRF를 적용할 것을 제안하며, 각 딥 러닝 모델들에 대한 비교실험을 보인다.

  • PDF

Sentiment Orientation Using Deep Learning Sequential and Bidirectional Models

  • Alyamani, Hasan J.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권11호
    • /
    • pp.23-30
    • /
    • 2021
  • Sentiment Analysis has become very important field of research because posting of reviews is becoming a trend. Supervised, unsupervised and semi supervised machine learning methods done lot of work to mine this data. Feature engineering is complex and technical part of machine learning. Deep learning is a new trend, where this laborious work can be done automatically. Many researchers have done many works on Deep learning Convolutional Neural Network (CNN) and Long Shor Term Memory (LSTM) Neural Network. These requires high processing speed and memory. Here author suggested two models simple & bidirectional deep leaning, which can work on text data with normal processing speed. At end both models are compared and found bidirectional model is best, because simple model achieve 50% accuracy and bidirectional deep learning model achieve 99% accuracy on trained data while 78% accuracy on test data. But this is based on 10-epochs and 40-batch size. This accuracy can also be increased by making different attempts on epochs and batch size.

양방향 LSTM기반 시계열 특허 동향 예측 연구 (A patent application filing forecasting method based on the bidirectional LSTM)

  • 최승완;김광수;곽수영
    • 전기전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.545-552
    • /
    • 2022
  • 특정 분야의 특허출원수는 기술의 수명주기 및 산업의 활성화 정도와 밀접한 관계를 가지고 있다. 따라서 사전에 사업을 준비하는 기업들과 미래 유망 기술을 초기 단계에서 선발하여 투자하고자 하는 정부 기관들은 미래의 특허 출원수 예측에 대해 큰 관심을 가지고 있다. 본 논문에서는 시계열 데이터에 적합한 RNN의 기법 중 하나인 양방향 LSTM 기법을 이용하여 기존 예측 방법들보다 정확도를 높이는 방법을 제안한다. 5개 분야의 대한민국 특허 출원 데이터에 대해서 제안된 방법은 기존에 사용되던 확산 모델 중 하나인 Bass 모델과 비교하여 평균 절대 백분율 오차(MAPE)의 값이 약 16퍼센트 향상된 결과를 보여준다.

A Text Content Classification Using LSTM For Objective Category Classification

  • Noh, Young-Dan;Cho, Kyu-Cheol
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권5호
    • /
    • pp.39-46
    • /
    • 2021
  • 인공지능은 현재 인공지능 번역기, 페이스 아이디와 같이 우리의 삶 다양한 곳에 적용되고 있으며 여러 가지 장점으로 많은 산업분야에서도 적용되고 있다. 본 연구는 매년 방대한 양의 콘텐츠들이 넘쳐나는 상황에서 인공지능을 적용한 카테고리 분류로 원하는 데이터를 추출함으로써 편의성을 제공한다. 본 연구에서는 텍스트 분류에서 두각을 나타내고 있는 LSTM(Long-Short Term Memory network)을 사용한 모델을 제안하며 자연어 처리에 적합한 구조를 가진 RNN(Recurrent Neural Network)과 BiLSTM(Bidirectional LSTM)을 사용한 모델과의 성능을 비교한다. 세 가지 모델의 성능비교는 뉴스 텍스트 데이터에 적용해 accuracy, precision, recall의 측정값을 사용해 비교하였고 그 결과 LSTM모델의 성능이 가장 우수한 것으로 나타났다. 따라서 본 연구에서는 LSTM을 사용한 텍스트 분류를 권장한다.

Multivariate Congestion Prediction using Stacked LSTM Autoencoder based Bidirectional LSTM Model

  • Vijayalakshmi, B;Thanga, Ramya S;Ramar, K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권1호
    • /
    • pp.216-238
    • /
    • 2023
  • In intelligent transportation systems, traffic management is an important task. The accurate forecasting of traffic characteristics like flow, congestion, and density is still active research because of the non-linear nature and uncertainty of the spatiotemporal data. Inclement weather, such as rain and snow, and other special events such as holidays, accidents, and road closures have a significant impact on driving and the average speed of vehicles on the road, which lowers traffic capacity and causes congestion in a widespread manner. This work designs a model for multivariate short-term traffic congestion prediction using SLSTM_AE-BiLSTM. The proposed design consists of a Bidirectional Long Short Term Memory(BiLSTM) network to predict traffic flow value and a Convolutional Neural network (CNN) model for detecting the congestion status. This model uses spatial static temporal dynamic data. The stacked Long Short Term Memory Autoencoder (SLSTM AE) is used to encode the weather features into a reduced and more informative feature space. BiLSTM model is used to capture the features from the past and present traffic data simultaneously and also to identify the long-term dependencies. It uses the traffic data and encoded weather data to perform the traffic flow prediction. The CNN model is used to predict the recurring congestion status based on the predicted traffic flow value at a particular urban traffic network. In this work, a publicly available Caltrans PEMS dataset with traffic parameters is used. The proposed model generates the congestion prediction with an accuracy rate of 92.74% which is slightly better when compared with other deep learning models for congestion prediction.

DG-based SPO tuple recognition using self-attention M-Bi-LSTM

  • Jung, Joon-young
    • ETRI Journal
    • /
    • 제44권3호
    • /
    • pp.438-449
    • /
    • 2022
  • This study proposes a dependency grammar-based self-attention multilayered bidirectional long short-term memory (DG-M-Bi-LSTM) model for subject-predicate-object (SPO) tuple recognition from natural language (NL) sentences. To add recent knowledge to the knowledge base autonomously, it is essential to extract knowledge from numerous NL data. Therefore, this study proposes a high-accuracy SPO tuple recognition model that requires a small amount of learning data to extract knowledge from NL sentences. The accuracy of SPO tuple recognition using DG-M-Bi-LSTM is compared with that using NL-based self-attention multilayered bidirectional LSTM, DG-based bidirectional encoder representations from transformers (BERT), and NL-based BERT to evaluate its effectiveness. The DG-M-Bi-LSTM model achieves the best results in terms of recognition accuracy for extracting SPO tuples from NL sentences even if it has fewer deep neural network (DNN) parameters than BERT. In particular, its accuracy is better than that of BERT when the learning data are limited. Additionally, its pretrained DNN parameters can be applied to other domains because it learns the structural relations in NL sentences.

소리 데이터를 이용한 불량 모터 분류에 관한 연구 (A Study on the Classification of Fault Motors using Sound Data)

  • 장일식;박구만
    • 방송공학회논문지
    • /
    • 제27권6호
    • /
    • pp.885-896
    • /
    • 2022
  • 제조에서의 모터 불량은 향후 A/S 및 신뢰성에 중요한 역활을 한다. 모터의 불량 구분은 소리, 전류, 진동등의 측정을 통해 검출한다. 본 논문에서 사용한 데이터는 자동차 사이드미러 모터 기어박스의 소리를 사용하였다. 모터 소리는 3가지의 클래스로 구성되어 있다. 소리 데이터는 멜스펙트로그램을 통한 변환 과정을 거쳐 네트워크 모델에 입력된다. 본 논문에서는 불량 모터 구분 성능을 올리기 위한 데이터 증강, 클래스 불균형에 따는 다양한 데이터 재샘플링, 재가중치 조절, 손실함수의 변경, 표현 학습과 클래스 구분의 두 단계 분리 방법 등 다양한 방법을 적용하였으며, 추가적으로 커리큘럼 러닝 방법, 자기 스페이스 학습 방법 등을 Bidirectional LSTM Attention, Convolutional Recurrent Neural Network, Multi-Head Attention, Bidirectional Temporal Convolution Network, Convolution Neural Network 등 총 5가지 네트워크 모델을 통하여 비교하고, 모터 소리 구분에 최적의 구성을 찾을 수 있었다.

딥러닝을 이용한 풍력 발전량 예측 (Prediction of Wind Power Generation using Deep Learnning)

  • 최정곤;최효상
    • 한국전자통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.329-338
    • /
    • 2021
  • 본 연구는 풍력발전의 합리적인 운영 계획과 에너지 저장창치의 용량산정을 위한 풍력 발전량을 예측한다. 예측을 위해 물리적 접근법과 통계적 접근법을 결합하여 풍력 발전량의 예측 방법을 제시하고 풍력 발전의 요인을 분석하여 변수를 선정한다. 선정된 변수들의 과거 데이터를 수집하여 딥러닝을 이용해 풍력 발전량을 예측한다. 사용된 모델은 Bidirectional LSTM(:Long short term memory)과 CNN(:Convolution neural network) 알고리즘을 결합한 하이브리드 모델을 구성하였으며, 예측 성능 비교를 위해 MLP 알고리즘으로 이루어진 모델과 오차를 비교하여, 예측 성능을 평가하고 그 결과를 제시한다.