• 제목/요약/키워드: Bidirectional Context

검색결과 21건 처리시간 0.026초

비디오에서 양방향 문맥 정보를 이용한 상호 협력적인 위치 및 물체 인식 (Collaborative Place and Object Recognition in Video using Bidirectional Context Information)

  • 김성호;권인소
    • 로봇학회논문지
    • /
    • 제1권2호
    • /
    • pp.172-179
    • /
    • 2006
  • In this paper, we present a practical place and object recognition method for guiding visitors in building environments. Recognizing places or objects in real world can be a difficult problem due to motion blur and camera noise. In this work, we present a modeling method based on the bidirectional interaction between places and objects for simultaneous reinforcement for the robust recognition. The unification of visual context including scene context, object context, and temporal context is also. The proposed system has been tested to guide visitors in a large scale building environment (10 topological places, 80 3D objects).

  • PDF

양방향 LSTM을 적용한 단어의미 중의성 해소 감정분석 (Emotion Analysis Using a Bidirectional LSTM for Word Sense Disambiguation)

  • 기호연;신경식
    • 한국빅데이터학회지
    • /
    • 제5권1호
    • /
    • pp.197-208
    • /
    • 2020
  • 어휘적 중의성이란 동음이의어, 다의어와 같이 단어를 2개 이상의 의미로 해석할 수 있는 경우를 의미하며, 감정을 나타내는 어휘에서도 어휘적 중의성을 띄는 경우가 다수 존재한다. 이러한 어휘들은 인간의 심리를 투영한다는 점에서 구체적이고, 풍부한 맥락을 전달하는 특징이 있다. 본 연구에서는 양방향 LSTM을 적용하여 중의성을 해소한 감정 분류 모델을 제안한다. 주변 문맥의 정보를 충분히 반영한다면, 어휘적 중의성 문제를 해결하고, 문장이 나타내려는 감정을 하나로 압축할 수 있다는 가정을 기반으로 한다. 양방향 LSTM은 문맥 정보를 필요로 하는 자연어 처리 연구 분야에서 자주 활용되는 알고리즘으로 본 연구에서도 문맥을 학습하기 위해 활용하고자 한다. GloVe 임베딩을 본 연구 모델의 임베딩 층으로 사용했으며, LSTM, RNN 알고리즘을 적용한 모델과 비교하여 본 연구 모델의 성능을 확인하였다. 이러한 프레임워크는 SNS 사용자들의 감정을 소비 욕구로 연결시킬 수 있는 마케팅 등 다양한 분야에 기여할 수 있을 것이다.

단방향 및 양방향 순환 신경망의 성능 평가 (Performance Evaluation of Unidirectional and Bidirectional Recurrent Neural Networks)

  • ;정경희 ;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.652-654
    • /
    • 2023
  • The accurate prediction of User Equipment (UE) paths in wireless networks is crucial for improving handover mechanisms and optimizing network performance, particularly in the context of Beyond 5G and 6G networks. This paper presents a comprehensive evaluation of unidirectional and bidirectional recurrent neural network (RNN) architectures for UE path prediction. The study employs a sequence-to-sequence model designed to forecast user paths in a wireless network environment, comparing the performance of unidirectional and bidirectional RNNs. Through extensive experimentation, the paper highlights the strengths and weaknesses of each RNN architecture in terms of prediction accuracy and computational efficiency. These insights contribute to the development of more effective predictive path-based mobility management strategies, capable of addressing the challenges posed by ultra-dense cell deployments and complex network dynamics.

A Study on Word Sense Disambiguation Using Bidirectional Recurrent Neural Network for Korean Language

  • Min, Jihong;Jeon, Joon-Woo;Song, Kwang-Ho;Kim, Yoo-Sung
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권4호
    • /
    • pp.41-49
    • /
    • 2017
  • Word sense disambiguation(WSD) that determines the exact meaning of homonym which can be used in different meanings even in one form is very important to understand the semantical meaning of text document. Many recent researches on WSD have widely used NNLM(Neural Network Language Model) in which neural network is used to represent a document into vectors and to analyze its semantics. Among the previous WSD researches using NNLM, RNN(Recurrent Neural Network) model has better performance than other models because RNN model can reflect the occurrence order of words in addition to the word appearance information in a document. However, since RNN model uses only the forward order of word occurrences in a document, it is not able to reflect natural language's characteristics that later words can affect the meanings of the preceding words. In this paper, we propose a WSD scheme using Bidirectional RNN that can reflect not only the forward order but also the backward order of word occurrences in a document. From the experiments, the accuracy of the proposed model is higher than that of previous method using RNN. Hence, it is confirmed that bidirectional order information of word occurrences is useful for WSD in Korean language.

온톨로지 지식 기반 특성치를 활용한 Bidirectional LSTM-CRF 모델의 시퀀스 태깅 성능 향상에 관한 연구 (Improving Bidirectional LSTM-CRF model Of Sequence Tagging by using Ontology knowledge based feature)

  • 진승희;장희원;김우주
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.253-266
    • /
    • 2018
  • 본 연구는 질의 응답(QA) 시스템에서 사용하는 개체명 인식(NER)의 성능을 향상시키기 위하여 시퀀스 태깅 방법론을 적용한 새로운 방법론을 제안한다. 사용자의 질의를 입력 받아 데이터베이스에 저장된 정답을 추출하기 위해서는 사람의 언어를 컴퓨터가 알아들을 수 있도록 구조화 질의어(SQL)와 같은 데이터베이스의 언어로 전환하는 과정이 필요한데, 개체명 인식은 사용자의 질의에서 데이터베이스에 포함된 클래스나 데이터 명을 식별하는 과정이다. 기존의 데이터베이스에서 질의에 포함된 단어를 검색하여 개체명을 인식하는 방식은 동음이의어와 문장성분 구를 문맥을 고려하여 식별하지 못한다. 다수의 검색 결과가 존재하면 그들 모두를 결과로 반환하기 때문에 질의에 대한 해석이 여러 가지가 나올 수 있고, 계산을 위한 시간복잡도가 커진다. 본 연구에서는 이러한 단점을 극복하기 위해 신경망 기반의 방법론을 사용하여 질의가 가지는 문맥적 의미를 반영함으로써 이러한 문제를 해결하고자 했고 신경망 기반의 방법론의 문제점인 학습되지 않은 단어에 대해서도 문맥을 통해 식별을 하고자 하였다. Sequence Tagging 분야에서 최신 기술인 Bidirectional LSTM-CRF 모델을 도입함으로써 신경망 모델이 가진 단점을 해결하였고, 학습되지 않은 단어에 대해서는 온톨로지 기반 특성치를 활용하여 문맥을 반영한 추론을 사용하였다. 음악 도메인의 온톨로지(Ontology) 지식베이스를 대상으로 실험을 진행하고 그 성능을 평가하였다. 본 연구에서 제안한 방법론인 L-Bidirectional LSTM-CRF의 성능을 정확하게 평가하기 위하여 학습에 포함된 단어들뿐만 아니라 학습에 포함되지 않은 단어들도 포함한 질의를 평가에 사용하였다. 그 결과 L-Bidirectional LSTM-CRF 모형을 재학습 시키지 않아도 학습에 포함되지 않은 단어를 포함한 질의에 대한 개체명 인식이 가능함을 확인하였고, 전체적으로 개체명 인식의 성능이 향상됨을 확인할 수 있었다.

Bi-GRU 이미지 캡션의 서술 성능 향상을 위한 Parallel Injection 기법 연구 (Parallel Injection Method for Improving Descriptive Performance of Bi-GRU Image Captions)

  • 이준희;이수환;태수호;서동환
    • 한국멀티미디어학회논문지
    • /
    • 제22권11호
    • /
    • pp.1223-1232
    • /
    • 2019
  • The injection is the input method of the image feature vector from the encoder to the decoder. Since the image feature vector contains object details such as color and texture, it is essential to generate image captions. However, the bidirectional decoder model using the existing injection method only inputs the image feature vector in the first step, so image feature vectors of the backward sequence are vanishing. This problem makes it difficult to describe the context in detail. Therefore, in this paper, we propose the parallel injection method to improve the description performance of image captions. The proposed Injection method fuses all embeddings and image vectors to preserve the context. Also, We optimize our image caption model with Bidirectional Gated Recurrent Unit (Bi-GRU) to reduce the amount of computation of the decoder. To validate the proposed model, experiments were conducted with a certified image caption dataset, demonstrating excellence in comparison with the latest models using BLEU and METEOR scores. The proposed model improved the BLEU score up to 20.2 points and the METEOR score up to 3.65 points compared to the existing caption model.

중간언어 문맥벡터의 정제를 통한 이중언어 사전 구축의 성능개선 (Enhancing Performance of Bilingual Lexicon Extraction through Refinement of Pivot-Context Vectors)

  • 권홍석;서형원;김재훈
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제41권7호
    • /
    • pp.492-500
    • /
    • 2014
  • 본 논문은 중간언어 기반 이중언어 사전 구축 방법에서 문맥벡터의 정제 방법을 제안한다. 중간언어 기반 이중언어 사전 구축 방법은 두 언어 간의 사전이나 병렬말뭉치 등 언어 자원이 부족한 언어쌍에 매우 효과적인 방법이다. 본 논문은 두 가지 정제 방법을 통해서 성능을 개선한다. 첫 번째 방법은 양방향 번역확률을 통하여 문맥벡터를 정제하였고 두 번째 방법은 품사 정보를 이용하여 문맥벡터를 정제하였다. 본 논문은 두 개의 서로 다른 언어 쌍으로 한국어-스페인어 그리고 한국어-프랑스어 양방향에 대해서 각각 이중언어 사전을 추출하는 실험을 하였다. 높은 빈도수를 가지는 어휘에 대한 번역 정확도는 최상위에서 최소 48.5%를, 상위 20에서 최대 88.5%의 정확도를 얻었고, 낮은 빈도수를 가지는 어휘에 대한 번역 정확도는 최상위에서 최소 26.5%를, 상위 20에서 최대 66.5%의 성능을 보였다.

Fine-tuning BERT Models for Keyphrase Extraction in Scientific Articles

  • Lim, Yeonsoo;Seo, Deokjin;Jung, Yuchul
    • 한국정보기술학회 영문논문지
    • /
    • 제10권1호
    • /
    • pp.45-56
    • /
    • 2020
  • Despite extensive research, performance enhancement of keyphrase (KP) extraction remains a challenging problem in modern informatics. Recently, deep learning-based supervised approaches have exhibited state-of-the-art accuracies with respect to this problem, and several of the previously proposed methods utilize Bidirectional Encoder Representations from Transformers (BERT)-based language models. However, few studies have investigated the effective application of BERT-based fine-tuning techniques to the problem of KP extraction. In this paper, we consider the aforementioned problem in the context of scientific articles by investigating the fine-tuning characteristics of two distinct BERT models - BERT (i.e., base BERT model by Google) and SciBERT (i.e., a BERT model trained on scientific text). Three different datasets (WWW, KDD, and Inspec) comprising data obtained from the computer science domain are used to compare the results obtained by fine-tuning BERT and SciBERT in terms of KP extraction.

Chinese-clinical-record Named Entity Recognition using IDCNN-BiLSTM-Highway Network

  • Tinglong Tang;Yunqiao Guo;Qixin Li;Mate Zhou;Wei Huang;Yirong Wu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권7호
    • /
    • pp.1759-1772
    • /
    • 2023
  • Chinese named entity recognition (NER) is a challenging work that seeks to find, recognize and classify various types of information elements in unstructured text. Due to the Chinese text has no natural boundary like the spaces in the English text, Chinese named entity identification is much more difficult. At present, most deep learning based NER models are developed using a bidirectional long short-term memory network (BiLSTM), yet the performance still has some space to improve. To further improve their performance in Chinese NER tasks, we propose a new NER model, IDCNN-BiLSTM-Highway, which is a combination of the BiLSTM, the iterated dilated convolutional neural network (IDCNN) and the highway network. In our model, IDCNN is used to achieve multiscale context aggregation from a long sequence of words. Highway network is used to effectively connect different layers of networks, allowing information to pass through network layers smoothly without attenuation. Finally, the global optimum tag result is obtained by introducing conditional random field (CRF). The experimental results show that compared with other popular deep learning-based NER models, our model shows superior performance on two Chinese NER data sets: Resume and Yidu-S4k, The F1-scores are 94.98 and 77.59, respectively.

Dual-stream Co-enhanced Network for Unsupervised Video Object Segmentation

  • Hongliang Zhu;Hui Yin;Yanting Liu;Ning Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권4호
    • /
    • pp.938-958
    • /
    • 2024
  • Unsupervised Video Object Segmentation (UVOS) is a highly challenging problem in computer vision as the annotation of the target object in the testing video is unknown at all. The main difficulty is to effectively handle the complicated and changeable motion state of the target object and the confusion of similar background objects in video sequence. In this paper, we propose a novel deep Dual-stream Co-enhanced Network (DC-Net) for UVOS via bidirectional motion cues refinement and multi-level feature aggregation, which can fully take advantage of motion cues and effectively integrate different level features to produce high-quality segmentation mask. DC-Net is a dual-stream architecture where the two streams are co-enhanced by each other. One is a motion stream with a Motion-cues Refine Module (MRM), which learns from bidirectional optical flow images and produces fine-grained and complete distinctive motion saliency map, and the other is an appearance stream with a Multi-level Feature Aggregation Module (MFAM) and a Context Attention Module (CAM) which are designed to integrate the different level features effectively. Specifically, the motion saliency map obtained by the motion stream is fused with each stage of the decoder in the appearance stream to improve the segmentation, and in turn the segmentation loss in the appearance stream feeds back into the motion stream to enhance the motion refinement. Experimental results on three datasets (Davis2016, VideoSD, SegTrack-v2) demonstrate that DC-Net has achieved comparable results with some state-of-the-art methods.