• Title/Summary/Keyword: Biaxial strain

Search Result 140, Processing Time 0.028 seconds

Strength of prestressed concrete beams in torsion

  • Karayannis, Chris G.;Chalioris, Constantin E.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.165-180
    • /
    • 2000
  • An analytical model with tension softening for the prediction of the capacity of prestressed concrete beams under pure torsion and under torsion combined with shear and flexure is introduced. The proposed approach employs bilinear stress-strain relationship with post cracking tension softening branch for the concrete in tension and special failure criteria for biaxial stress states. Further, for the solution of the governing equations a special numerical scheme is adopted which can be applied to elements with practically any cross-section since it utilizes a numerical mapping. The proposed method is mainly applied to plain prestressed concrete elements, but is also applicable to prestressed concrete beams with light transverse reinforcement. The aim of the present work is twofold; first, the validation of the approach by comparison between experimental results and analytical predictions and second, a parametrical study of the influence of concentric and eccentric prestressing on the torsional capacity of concrete elements and the interaction between torsion and shear for various levels of prestressing. The results of this investigation presented in the form of interaction curves, are compared to experimental results and code provisions.

Fixed-point Iteration for the Plastic Deformation Analysis of Anisotropic Materials (이방성 재료의 소성변형 해석을 위한 고정점 축차)

  • Seung-Yong Yang;Jeoung Han Kim
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.29-34
    • /
    • 2023
  • A fixed-point iteration is proposed to integrate the stress and state variables in the incremental analysis of plastic deformation. The Conventional Newton-Raphson method requires a second-order derivative of the yield function to generate a complicated code, and the convergence cannot be guaranteed beforehand. The proposed fixed-point iteration does not require a second-order derivative of the yield function, and convergence is ensured for a given strain increment. The fixed-point iteration is easier to implement, and the computational time is shortened compared with the Newton-Raphson method. The plane-stress condition is considered for the biaxial loading conditions to confirm the convergence of the fixed-point iteration. 3-dimensional tensile specimen is considered to compare the computational times in the ABAQUS/explicit finite element analysis.

Evaluation of Split Tension Fatigue Test Method for Application in Concrete (콘크리트의 쪼갬인장 피로실험방법 제안 및 적용성 평가)

  • Kim Dong-Ho;Lee Joo-Hyung;Jeong Won-Kyong;Yun Kyong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.27-35
    • /
    • 2004
  • Most of concrete fatigue tests currently used are flexural tension or compression methods to investigate the tensile or compressive properties, respectively. However, the concrete pavement or concrete slab is actually subjected to a combined stress condition such as biaxial or triaxial. The split tension test may result in similar stress condition to biaxial stress condition. The purposes of this study were to evaluate the split tension fatigue test method for application in concrete. These were done by a finite element analysis and experimental series. The results were as follows: The optimum configuration of split tension fatigue test was a cylinder of 15cm in diameter and 7.5cm in thickness, which had a little different thickness compared to the KS standard cylinder of ${\phi}15{\times}30cm$. The concrete stress ratio of compressive against horizontal from FEA was 3.1, while that from theory was 3.0. The stress distributions of mortar and steel were almost similar at different thicknesses. The measured static split tensile strengths of concrete and mortar were quite similar at 30cm and 7.5cm thickness cylinders. The measured stress-strain relationship showed their consistency at all specimens regardless of thickness, and confirmed the results from FEA. As a results, the concrete split tension specimen, cylinder of 15cm in diameter and 7.5cm in thickness, could be used at fatigue test because of its accuracy, simplicity and convenience.

A Study on Acoustic Emission and Micro Deformation Characteristics During Biaxial Compression Experiments of Underground Opening Damage (이축압축실험을 통한 지하공동 손상시 음향방출 및 미소변형 특성 연구)

  • Min-Jun Kim;Junhyung Choi;Taeyoo Na;Chan Park;Byung-Gon Chae;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.169-184
    • /
    • 2024
  • This study investigates acoustic emission (AE) and micro-deformation characteristics of circular openings through biaxial compression experiments. The experimental results showed a significant increase in the frequency, count, energy, and amplitude of AE signals immediately before damage occurred in the circular opening. The differences in frequency and count between before and after damage initiation were significantly pronounced, indicating suitable factors for identifying damage occurrence in circular openings. The results for digital image correlation (DIC) technique revealed that micro-deformation was concentrated around the openings, as evidenced by the spatial distribution of strain. In addition, spalling was observed at the end of the experiments. The AE and micro-deformation characteristics presented in this study are expected to serve as fundamental data for evaluating the stability of underground openings and boreholes for deep subsurface projects.

Dynamic Strain Aging of Zircaloy-4 PWR Fuel Cladding in Biaxial Stress State (가압경수로용 지르칼로이-4 피복관의 2축 응력 인장시 동적 변형 시효)

  • Park, Ki-Seong;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.89-98
    • /
    • 1989
  • The expanding copper mandrel test performed at three strain rates (3.2$\times$10E -5/s, 2.0$\times$10E-6/s and 1.2$\times$10E-7/s) over 553-873 K temperature range by varying the heating rates (8-1$0^{\circ}C$/s, 1-2$^{\circ}C$/s and 0.5$^{\circ}C$/s) in air and in vacuum (5$\times$10E-5 torr). The yield stress peak, the strain rate sensitivity minimum and the activation volume peaks could be explained in terms of the dynamic strain aging. The activation energy for dynamic strain aging obtained from the yield stress peak temperature and strain rate was 196 KJ/mol and this value was in good agreement with the activation energy for oxygen diffusion in $\alpha$-zirconium and Zircaloy-2 (207-220 KJ/mol). Therefore, oxygen atoms are responsible for the dynamic strain aging which appeared between 573 K and 673 K. The yield stress increase due to the oxidation was obtained by comparing the yield stress in air with that in vacuum and represented by the percentage increase of yield stress ( $\sigma$$^{a}$ $_{y}$ - $\sigma$$^{v}$ $_{y}$ / $\sigma$$^{v}$ $_{y}$ ). The slower the strain rate, the greater the percentage increase occurs. In order to estimate the yield stress of PWR fuel cladding material under the service environment, the yield stress in water was obtained by comparing the oxidation rate in air that in water assuming the relationship between the oxygen pick-up amount and the yield stress increase.

  • PDF

Effects of triaxial magnetic field on the anisotropic nanoplates

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.361-374
    • /
    • 2017
  • In this study, the influences of triaxial magnetic field on the wave propagation behavior of anisotropic nanoplates are studied. In order to include small scale effects, nonlocal strain gradient theory has been implemented. To study the nanoplate as a continuum model, the three-dimensional elasticity theory is adopted in Cartesian coordinate. In our study, all the elastic constants are considered and assumed to be the functions of (x, y, z), so all kind of anisotropic structures such as hexagonal and trigonal materials can be modeled, too. Moreover, all types of functionally graded structures can be investigated. eigenvalue method is employed and analytical solutions for the wave propagation are obtained. To justify our methodology, our results for the wave propagation of isotropic nanoplates are compared with the results available in the literature and great agreement is achieved. Five different types of anisotropic structures are investigated in present paper and then the influences of wave number, material properties, nonlocal and gradient parameter and uniaxial, biaxial and triaxial magnetic field on the wave propagation analysis of anisotropic nanoplates are presented. From the best knowledge of authors, it is the first time that three-dimensional elasticity theory and nonlocal strain gradient theory are used together with no approximation to derive the governing equations. Moreover, up to now, the effects of triaxial magnetic field have not been studied with considering size effects in nanoplates. According to the lack of any common approximations in the displacement field or in elastic constant, present theory has the potential to be used as a bench mark for future works.

Experimental Studies on Creep of Concrete under Multiaxial Stresses (다축응력 상태에 놓인 콘크리트외 크리프 특성에 관한 실험 연구)

  • Kwon Seung-Hee;Kim Sun-Young;Kim Jin-Keun;Lee Soo-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.185-194
    • /
    • 2004
  • It is difficult to analyze and predict the long-term behavior of concrete structures and members under multiaxial stresses because most of existing researches on creep of concrete were mainly concerned about uniaxial stress state. Therefore, the main objective of this paper is the investigation of creep properties of concrete under multiaxial stresses. This paper presents experimental study on creep of concrete under multiaxial compression. Twenty seven cubic specimens($20{\times}20{\times}20 cm$) for three concrete mixes were tested under uniaxial, biaxial, and triaxial stress states. Creep strains were measured in three directions of principal stresses. Poisson's ratio at the initial loading was obtained, as was Poisson's ratio due to creep stain and Poisson's ratio due to the combined creep strain and elastic strain. These Poisson's ratios were approximately equal for each concrete mix. The Poisson's ratio at the initial loading and the Poisson's ratio for the combined strain Increased slightly as the strength of the concrete increased. In addition, the volumetric creep strain and deviatoric creep strain were linearly proportional to volumetric stress and deviatoric stress, respectively.

General inflation and bifurcation analysis of rubber balloons (고무풍선의 일반화 팽창 및 분기 해석)

  • Park, Moon Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.14-24
    • /
    • 2018
  • Several typical hyper-elastic constitutive models that encompass both conventional and advanced ones were investigated for the application of instability problems, including the biaxial tension of a rubber patch and inflation of spherical or cylindrical balloons. The material models included the neo-Hookean model, Mooney-Rivlin model, Gent model, Arruda-Boyce model, Fung model, and Pucci-Saccomandi model. Analyses can be done using membrane equations with particular strain energy density functions. Among the typical strain energy density functions, Kearsley's bifurcation for the Treloar's patch occurs only with the Mooney-Rivlin model. The inflation equation is so generalized that a spherical balloon and tube balloons can be taken into account. From the analyses, the critical material parameters and limit points were identified for material models in terms of the non-dimensional pressure and inflation volume ratio. The bifurcation was then identified and found for each material model of a balloon. When the finite element method was used for the structural instability problems of rubber-like materials, some careful treatments required could be suggested. Overall, care must be taken not only with the analysis technique, but also in selecting constitutive models, particularly the instabilities.

Evaluation of Yield Surfaces of Epoxy Polymers Considering the Influence of Crosslinking Ratio: A Molecular Dynamics Study (분자동역학 해석 기반 가교율에 따른 에폭시 폴리머의 항복 표면 형상 평가)

  • Jinyoung Kim;Hyungbum Park
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.369-376
    • /
    • 2023
  • This study focuses on investigating the influence of epoxy polymer crosslinking density, a crucial aspect in composite material matrices, on the yield surface using molecular dynamics simulations. Our approach involved generating epoxy models with diverse crosslinking densities and subjecting them to both uniaxial and multiaxial deformation simulations, accounting for the elasto-plastic deformation behaviors. Through this, we obtained key mechanical parameters including elastic modulus, yield point, and strain hardening coefficient, all correlated with crosslinking conversion ratios. A particularly noteworthy finding is the rapid expansion of the yield surface in the biaxial compression region with increasing crosslinking ratios, compared to the uniaxial tensile region. This unique behavior led to observable yield surface variations, indicating a significant pressure-dependent relationship of the yield surface considering plastic strain and crosslinking conversion ratio. These results contribute to a deeper understanding of the complex interplay between crosslinking density and plastic mechanical response, especially in the aspect of multiaxial deformation behaviors.

Biaxial Strain Analysis of Various Fixation Models in Porcine Aortic and Pulmonary Valves (돼지 대동맥 판막과 폐동맥 판막의 고정 방법에 따른 양방향 압력-신장도의 비교분석)

  • Cho, Sung-Kyu;Kim, Yong-Jin;Kim, Soo-Hwan;Choi, Seung-Hwa
    • Journal of Chest Surgery
    • /
    • v.42 no.5
    • /
    • pp.566-575
    • /
    • 2009
  • Background: The function of a bioprosthetic heart valve is determined largely by the material properties of the valve cusps. The uniaxial tensile test has been studied extensively. This type of testing, however, does not replicate the natural biaxial loading condition. The objective of the present study was to investigate the regional variability of the biaxial strain versus pressure relationship based on the types of fixation liquid models. Material and Method: Porcine aortic valves and pulmonary valves were assigned to three groups: the untreated fresh group, the fixed with glutaraldehyde (GA) group, and the glutaraldehyde with solvent (e.g., ethanol) group. For each group we measured the radial and circumferential stretch characteristics of the valve as a function of pressure change. Result: Radial direction elasticity of porcine aortic and pulmonary valves were better than circumferential direction elasticity in fresh, GA fixed and GA+solvent fixed groups (p=0.00). Radial and circumferential direction elasticity of pulmonary valves were better than aortic valves in GA fixed, and GA+solvent fixed groups (p=0.00). Radial and circumferential direction elasticity of aortic valves were decreased after GA and GA+solvent fixation(p=0.00), except for circumferential elasticity of GA+solvent fixed valves (p=0.785). The radial (p=0.137) and circumferential (p=0.785) direction of elasticity of aortic valves were not significantly different between GA fixed. and GA+solvent fixed groups. Radial (p=0.910) and circumferential (p=0.718) direction of elasticity of pulmonary valve also showed no significant difference between GA fixed and GA+solvent fixed groups. Conclusion: When fixing porcine valves with GA, adding a solvent does not cause a loss of mechanical properties, but, does not improve elasticity either. Radial direction elasticity of porcine aortic and pulmonary valves was better than circumferential direction elasticity.