• Title/Summary/Keyword: Biases

Search Result 588, Processing Time 0.029 seconds

Tc-99m DMSA SPECT for Follow-Up of Non-Operative Treatments in Renal Injuries: A Prospective Single-Center Study

  • Sang-Geon Cho;Ki Seong Park;Jahae Kim;Jang Bae Moon;Ho-Chun Song;Taek Won Kang;Seong Hyeon Yu
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.1017-1027
    • /
    • 2023
  • Objective: The assessment of cortical integrity following renal injuries with planar Tc-99m dimercaptosuccinic acid (DMSA) scintigraphy depends on measuring relatively decreased cortical uptake (i.e., split renal function [SRF]). We analyzed the additive values of the volumetric and quantitative analyses of the residual cortical integrity using single-photon emission computed tomography (SPECT) compared to the planar scintigraphy. Materials and Methods: This prospective study included 47 patients (male:female, 32:15; age, 47 ± 22 years) who had non-operatively managed renal injuries and underwent DMSA planar and SPECT imaging 3-6 months after the index injury. In addition to planar SRF, SPECT SRF, cortical volume, and absolute cortical uptake were measured for the injured kidney and both kidneys together. The correlations of planar SRF with SPECT SRF and those of SRF with volumetric/quantitative parameters obtained with SPECT were analyzed. The association of SPECT parameters with renal function, grades of renal injuries, and the risk of renal failure was also analyzed. Results: SPECT SRF was significantly lower than planar SRF, with particularly higher biases in severe renal injuries. Planar and SPECT SRF (dichotomized with a cutoff of 45%) showed 19%-36% of discrepancies with volumetric and quantitative DMSA indices (when dichotomized as either high or low). Absolute cortical uptake of the injured kidney best correlated with glomerular filtration rate (GFR) at follow-up (ρ = 0.687, P < 0.001) with significant stepwise decreases by GFR strata (90 and 60 mL/min/1.73 m2). Total renal cortical uptake was significantly lower in patients with moderate-to-high risk of renal failure than those with low risk. However, SRF did not reflect GFR decrease below 60 mL/min/1.73 m2 or the risk of renal failure, regardless of planar or SPECT (count- or volume-based SRF) imaging. Conclusion: Quantitative measurements of renal cortical integrity assessed with DMSA SPECT can provide more clinically relevant and comprehensive information than planar imaging or SRF alone.

Exploring the DNA methylome of Korean patients with colorectal cancer consolidates the clinical implications of cancer-associated methylation markers

  • Sejoon Lee;Kil-yong Lee;Ji-Hwan Park;Duck-Woo Kim;Heung-Kwon Oh;Seong-Taek Oh;Jongbum Jeon;Dongyoon Lee;Soobok Joe;Hoang Bao Khanh Chu;Jisun Kang;Jin-Young Lee;Sheehyun Cho;Hyeran Shim;Si-Cho Kim;Hong Seok Lee;Young-Joon Kim;Jin Ok Yang;Jaeim Lee;Sung-Bum Kang
    • BMB Reports
    • /
    • v.57 no.3
    • /
    • pp.161-166
    • /
    • 2024
  • Aberrant DNA methylation plays a critical role in the development and progression of colorectal cancer (CRC), which has high incidence and mortality rates in Korea. Various CRC-associated methylation markers for cancer diagnosis and prognosis have been developed; however, they have not been validated for Korean patients owing to the lack of comprehensive clinical and methylome data. Here, we obtained reliable methylation profiles for 228 tumor, 103 adjacent normal, and two unmatched normal colon tissues from Korean patients with CRC using an Illumina Infinium EPIC array; the data were corrected for biological and experiment biases. A comparative methylome analysis confirmed the previous findings that hypermethylated positions in the tumor were highly enriched in CpG island and promoter, 5' untranslated, and first exon regions. However, hypomethylated positions were enriched in the open-sea regions considerably distant from CpG islands. After applying a CpG island methylator phenotype (CIMP) to the methylome data of tumor samples to stratify the CRC patients, we consolidated the previously established clinicopathological findings that the tumors with high CIMP signatures were significantly enriched in the right colon. The results showed a higher prevalence of microsatellite instability status and MLH1 methylation in tumors with high CMP signatures than in those with low or non-CIMP signatures. Therefore, our methylome analysis and dataset provide insights into applying CRC-associated methylation markers for Korean patients regarding cancer diagnosis and prognosis.

Attention and Memory Bias to threatened stimuli in Individuals with High Social Anxiety (고 사회 불안 성인의 위협 자극에 대한 주의 및 기억 편향)

  • Jin-Ah Park;So-Yeon Kim
    • Science of Emotion and Sensibility
    • /
    • v.27 no.2
    • /
    • pp.113-126
    • /
    • 2024
  • Individuals with social anxiety disorders tend to hold attentional bias toward threatening stimuli in social contexts regardless of task relevance. Although attentional bias is relatively consistent, findings on memory performance are mixed. This study examined attentional and memory biases toward threat stimuli in individuals with high levels of social anxiety. Participants included 19 individuals with high social anxiety (HSA) and another 20 individuals with low social anxiety (LSA). They performed a continuous attention task to measure attentional bias to threat. Afterward, they performed an unexpected memory task using distracting stimuli from the previous attention task to measure memory bias to task-irrelevant threatening stimuli. The results indicated that the HSA and LSA groups exhibited an initial attentional bias toward emotional faces. However, only the HSA group displayed prolonged attentional bias and demonstrated memory bias toward angry faces. Conversely, the LSA group exhibited attentional bias toward happy faces after 4 s. The findings imply that the absence of bias toward positive stimuli and the presence of bias toward negative stimuli may contribute to the maintenance and severity of social anxiety pathology.

Comparison of Deep Learning Frameworks: About Theano, Tensorflow, and Cognitive Toolkit (딥러닝 프레임워크의 비교: 티아노, 텐서플로, CNTK를 중심으로)

  • Chung, Yeojin;Ahn, SungMahn;Yang, Jiheon;Lee, Jaejoon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.1-17
    • /
    • 2017
  • The deep learning framework is software designed to help develop deep learning models. Some of its important functions include "automatic differentiation" and "utilization of GPU". The list of popular deep learning framework includes Caffe (BVLC) and Theano (University of Montreal). And recently, Microsoft's deep learning framework, Microsoft Cognitive Toolkit, was released as open-source license, following Google's Tensorflow a year earlier. The early deep learning frameworks have been developed mainly for research at universities. Beginning with the inception of Tensorflow, however, it seems that companies such as Microsoft and Facebook have started to join the competition of framework development. Given the trend, Google and other companies are expected to continue investing in the deep learning framework to bring forward the initiative in the artificial intelligence business. From this point of view, we think it is a good time to compare some of deep learning frameworks. So we compare three deep learning frameworks which can be used as a Python library. Those are Google's Tensorflow, Microsoft's CNTK, and Theano which is sort of a predecessor of the preceding two. The most common and important function of deep learning frameworks is the ability to perform automatic differentiation. Basically all the mathematical expressions of deep learning models can be represented as computational graphs, which consist of nodes and edges. Partial derivatives on each edge of a computational graph can then be obtained. With the partial derivatives, we can let software compute differentiation of any node with respect to any variable by utilizing chain rule of Calculus. First of all, the convenience of coding is in the order of CNTK, Tensorflow, and Theano. The criterion is simply based on the lengths of the codes and the learning curve and the ease of coding are not the main concern. According to the criteria, Theano was the most difficult to implement with, and CNTK and Tensorflow were somewhat easier. With Tensorflow, we need to define weight variables and biases explicitly. The reason that CNTK and Tensorflow are easier to implement with is that those frameworks provide us with more abstraction than Theano. We, however, need to mention that low-level coding is not always bad. It gives us flexibility of coding. With the low-level coding such as in Theano, we can implement and test any new deep learning models or any new search methods that we can think of. The assessment of the execution speed of each framework is that there is not meaningful difference. According to the experiment, execution speeds of Theano and Tensorflow are very similar, although the experiment was limited to a CNN model. In the case of CNTK, the experimental environment was not maintained as the same. The code written in CNTK has to be run in PC environment without GPU where codes execute as much as 50 times slower than with GPU. But we concluded that the difference of execution speed was within the range of variation caused by the different hardware setup. In this study, we compared three types of deep learning framework: Theano, Tensorflow, and CNTK. According to Wikipedia, there are 12 available deep learning frameworks. And 15 different attributes differentiate each framework. Some of the important attributes would include interface language (Python, C ++, Java, etc.) and the availability of libraries on various deep learning models such as CNN, RNN, DBN, and etc. And if a user implements a large scale deep learning model, it will also be important to support multiple GPU or multiple servers. Also, if you are learning the deep learning model, it would also be important if there are enough examples and references.

A meta-analysis of the effect for Creativity, Creative Problem Solving Abilities in STEAM (융합인재교육(STEAM)의 창의성과 문제해결력 효과에 관한 메타분석 -연구방법 및 연구자를 중심으로-)

  • Lee, Seokjin;Kim, Namsook;Lee, Yoonjin;Lee, Seungjin
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.1
    • /
    • pp.87-101
    • /
    • 2017
  • The analysis was carried out with meta-analysis on master's and doctoral dissertations, and academic journals that analyzed the effects of STEAM education between 2012 and 2015. From the total number of 75 dissertations and articles analyzed, 183 different effect sizes were calculated. The analysis was done to find out the kinds of differences that would be created according to the effect size of creativity, problem-solving ability, and researcher, target area, student division research design type, and level of schools. The total effect size of creativity scored 0.776, and demonstrated satisfaction in symmetry of funnel plot, with no publication biases. The fail-safe N scored 780, and since the number is smaller than 8,945, the results of this research has credibility. Furthermore, problem-solving ability shows intermediate level of effect size with a score of 0.584. It also showed satisfaction in symmetry with funnel plot, with no publication bias. With the different research methods of the sub-factors of creativity, fluency scored the highest with 0.929, flexibility with 0.881, originality with 0.838, sophistication with 0.653, abstractness with title 0.705, and resistance to termination, 0.527. This study finds its significance in the demonstration of average effect size of STEAM education through meta-analysis. According to research results, the effects of inclusive education could be determined, yet the specific effect cause or learning principles were difficult to find. It was found that the effects of STEAM education do not rise or fall depending on school age, and demonstrated differences in creativity according to the research methods or the researchers.

Validation of Sea Surface Wind Speeds from Satellite Altimeters and Relation to Sea State Bias - Focus on Wind Measurements at Ieodo, Marado, Oeyeondo Stations (인공위성 고도계 해상풍 검증과 해상상태편차와의 관련성 - 이어도, 마라도, 외연도 해상풍 관측치를 중심으로 -)

  • Choi, Do-Young;Woo, Hye-Jin;Park, Kyung-Ae;Byun, Do-Seong;Lee, Eunil
    • Journal of the Korean earth science society
    • /
    • v.39 no.2
    • /
    • pp.139-153
    • /
    • 2018
  • The sea surface wind field has long been obtained from satellite scatterometers or passive microwave radiometers. However, the importance of satellite altimeter-derived wind speed has seldom been addressed because of the outstanding capability of the scatterometers. Satellite altimeter requires the accurate wind speed data, measured simultaneously with sea surface height observations, to enhance the accuracy of sea surface height through the correction of sea state bias. This study validates the wind speeds from the satellite altimeters (GFO, Jason-1, Envisat, Jason-2, Cryosat-2, SARAL) and analyzes characteristics of errors. In total, 1504 matchup points were produced using the wind speed data of Ieodo Ocean Research Station (IORS) and of Korea Meteorological Administration (KMA) buoys at Marado and Oeyeondo stations for 10 years from December 2007 to May 2016. The altimeter wind speed showed a root mean square error (RMSE) of about $1.59m\;s^{-1}$ and a negative bias of $-0.35m\;s^{-1}$ with respect to the in-situ wind speed. Altimeter wind speeds showed characteristic biases that they were higher (lower) than in-situ wind speeds at low (high) wind speed ranges. Some tendency was found that the difference between the maximum and minimum value gradually increased with distance from the buoy stations. For the improvement of the accuracy of altimeter wind speed, an equation for correction was derived based on the characteristics of errors. In addition, the significance of altimeter wind speed on the estimation of sea surface height was addressed by presenting the effect of the corrected wind speeds on the sea state bias values of Jason-1.

Intercomparing the Aerosol Optical Depth Using the Geostationary Satellite Sensors (AHI, GOCI and MI) from Yonsei AErosol Retrieval (YAER) Algorithm (연세에어로졸 알고리즘을 이용하여 정지궤도위성 센서(AHI, GOCI, MI)로부터 산출된 에어로졸 광학두께 비교 연구)

  • Lim, Hyunkwang;Choi, Myungje;Kim, Mijin;Kim, Jhoon;Go, Sujung;Lee, Seoyoung
    • Journal of the Korean earth science society
    • /
    • v.39 no.2
    • /
    • pp.119-130
    • /
    • 2018
  • Aerosol Optical Properties (AOPs) are retrieved using the geostationary satellite instruments such as Geostationary Ocean Color Imager (GOCI), Meteorological Imager (MI), and Advanced Himawari Imager (AHI) through Yonsei AErosol Retrieval algorithm (YAER). In this study, the retrieved aerosol optical depths (AOD)s from each instrument were intercompared and validated with the ground-based sunphotometer AErosol Robotic NETwork (AERONET) data. As a result, the four AOD products derived from different instruments showed consistent results over land and ocean. However, AODs from MI and GOCI tend to be overestimated due to cloud contamination. According to the comparison results with AERONET, the percentage within expected errors (EE) are 36.3, 48.4, 56.6, and 68.2% for MI, GOCI, AHI-minimum reflectivity method (MRM), and AHI-estimated surface reflectance from shortwave Infrared (ESR) product, respectively. Since MI AOD is retrieved from a single visible channel, and adopts only one aerosol type by season, EE is relatively lower than other products. On the other hand, the AHI ESR is more accurate than the minimum reflectance method as used by GOCI, MI, and AHI MRM method in May and June when the vegetation is relatively abundant. These results are explained by the RMSE and the EE for each AERONET site. The ESR method result show to be better than the other satellite product in terms of EE for 15 out of 22 sites used for validation, and they are better than the other product for 13 sites in terms of RMSE. In addition, the error in observation time in each product is found by using characteristics of geostationary satellites. The absolute median biases at 00 to 06 Universal Time Coordinated (UTC) are 0.05, 0.09, 0.18, 0.18, 0.14, 0.09, and 0.10. The absolute median bias by observation time has appeared in MI and the only 00 UTC appeared in GOCI.

The Effects of Cognitive Bias on Entrepreneurial Opportunity Evaluations through Perceived Risks in Entrepreneurial Self-Efficacy (창업가의 인지편향이 지각된 위험과 조절된 창업효능감에 따라 창업기회평가에 미치는 영향)

  • Kim, Daeyop;Park, Jaehwan
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.15 no.1
    • /
    • pp.95-112
    • /
    • 2020
  • This paper is to investigate how cognitive bias of college students and entrepreneurs relates to perceived risks and entrepreneurial opportunities that represent uncertainty, and how various cognitive bias and entrepreneurial efficacy In the same way. The purpose of this study is to find improvement points of entrepreneurship education for college students and to suggest problems and improvement possibilities in the decision making process of current entrepreneurs. This empirical study is a necessary to improve the decision-making of individuals who want to start a business at the time when various attempts are made to activate the start-up business and increase the sustainability of the existing SME management. And understanding of the difference in opportunity evaluation, and suggests that it is necessary to provide good opportunities together with the upbringing of entrepreneurs. In order to achieve the purpose of the study, questionnaires were conducted for college students and entrepreneurs. A total of 363 questionnaire data were obtained and demonstrated through structural equation modeling. This study confirms that there is some relationship between perceived risk and cognitive bias. Overconfidence and control illusions among cognitive bias have a significant relationship between perceived risk and wealth. Especially, it is confirmed that control illusion of college students has a significant relationship with perceived risk. Second, cognitive bias demonstrated some significant relationship with opportunity evaluation. Although we did not find evidence that excess self-confidence is related to opportunity evaluation, we have verified that control illusions and current status bias are related to opportunity evaluation. Control illusions were significant in both college students and entrepreneurs. Third, perceived risk has a negative relationship with opportunity evaluation. All students, regardless of whether they are college students or entrepreneurs, judge opportunities positively if they perceive low risk. Fourth, it can be seen from the college students 'group that entrepreneurial efficacy has a moderating effect between perceived risk and opportunity evaluation, but no significant results were found in the entrepreneurs' group. Fifth, the college students and entrepreneurs have different cognitive bias, and they have proved that there is a different relationship between entrepreneurial opportunity evaluation and perceived risk. On the whole, there are various cognitive biases that are caused by time pressure or stress on college students and entrepreneurs who have to make judgments in uncertain opportunities, and in this respect, they can improve their judgment in the future. At the same time, university students can have a positive view of new opportunities based on high entrepreneurial efficacy, but if they fully understand the intrinsic risks of entrepreneurship through entrepreneurial education and fully understand the cognitive bias present in direct entrepreneurial experience, You will get a better opportunity assessment. This study has limitations in that it is based on the fact that university students and entrepreneurs are integrated, and that the survey respondents are selected by the limited random sampling method. It is necessary to conduct more systematic research based on more faithful data in the absence of the accumulation of entrepreneurial research data. Second, the translation tools used in the previous studies were translated and the meaning of the measurement tools might not be conveyed due to language differences. Therefore, it is necessary to construct a more precise scale for the accuracy of the study. Finally, complementary research should be done to identify what competitive opportunities are and what opportunities are appropriate for entrepreneurs.

A Simulation of Agro-Climate Index over the Korean Peninsula Using Dynamical Downscaling with a Numerical Weather Prediction Model (수치예보모형을 이용한 역학적 규모축소 기법을 통한 농업기후지수 모사)

  • Ahn, Joong-Bae;Hur, Ji-Na;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • A regional climate model (RCM) can be a powerful tool to enhance spatial resolution of climate and weather information (IPCC, 2001). In this study we conducted dynamical downscaling using Weather Research and Forecasting Model (WRF) as a RCM in order to obtain high resolution regional agroclimate indices over the Korean Peninsula. For the purpose of obtaining detailed high resolution agroclimate indices, we first reproduced regional weather for the period of March to June, 2002-2008 with dynamic downscaling method under given lateral boundary conditions from NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data. Normally, numerical model results have shown biases against observational results due to the uncertainties in the modelis initial conditions, physical parameterizations and our physical understanding on nature. Hence in this study, by employing a statistical method, the systematic bias in the modelis results was estimated and corrected for better reproduction of climate on high resolution. As a result of the correction, the systematic bias of the model was properly corrected and the overall spatial patterns in the simulation were well reproduced, resulting in more fine-resolution climatic structures. Based on these results, the fine-resolution agro-climate indices were estimated and presented. Compared with the indices derived from observation, the simulated indices reproduced the major and detailed spatial distributions. Our research shows a possibility to simulate regional climate on high resolution and agro-climate indices by using a proper downscaling method with a dynamical weather forecast model and a statistical correction method to minimize the model bias.

Parameter Sensitivity Analysis for Spatial and Temporal Temperature Simulation in the Hapcheon Dam Reservoir (합천댐 저수지에서의 시공간적 수온모의를 위한 매개변수 민감도 분석)

  • Kim, Boram;Kang, Boosik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1181-1191
    • /
    • 2013
  • This study have implemented finding the optimal water temperature parameter set for Hapcheon dam reservoir using CE-QUAL-W2 model. In particular the sensitivity analysis was carried out for four water temperature parameters of wind sheltering coefficient (WSC), radiation heat coefficient (BETA), light extinction coefficient (EXH2O), heat exchange coefficient at the channel bed (CBHE). Firstly, WSC, BETA, EXH2O shows relatively high sensitivity in common during April to September, and CBHE does during August to November. Secondly, as a result of identifying depth range of parameter influence, BETA and EXH2O show 0~9 m and 8~14 m which is thermocline layer close to water surface, CBHE is deep layer 12 m away from bottom. Finally, applying annual or monthly optimal parameter sets indicates that the bias between two sets does not show much differences for WSC and CBHE parameters, but BETA and EXH2O parameters show $0.20^{\circ}C$ and $0.51^{\circ}C$ of monthly average biases for two parameter sets. In particular the bias reveals to be $0.4^{\circ}C$ and $1.09^{\circ}C$ during May and August that confirms the necessity of use of monthly parameters during that season. It is claimed that the current operational custom use of annual parameters in calibration of reservoir water quality model requires the improvement of using monthly parameters.