• 제목/요약/키워드: Bias Flux

검색결과 118건 처리시간 0.024초

모사된 화재의 열적환경에서 열전대를 이용한 온도 측정오차에 관한 실험적 연구 (An Experimental Study on Temperature Measurement Bias using Thermocouple in Simulated Thermal Environments of Fire)

  • 한호식;윤홍석;황철홍;김성찬
    • 한국안전학회지
    • /
    • 제32권2호
    • /
    • pp.7-13
    • /
    • 2017
  • An experimental study was conducted to identify the quantitative measurement bias for the bare-bead thermocouple (TC), which was widely used for measuring temperature in fire experiments. To this end, an apparatus could be controlled individually gas flow rate, preheating temperature and incident radiative heat flux was developed to simulate the thermal environments of fire. A relative measurement bias of bare-bead TC was evaluated with the comparison of double-shield aspirated TC. As a result, the relative measurement bias of bare-bead TC was gradually increased with the increase in radiative heat flux with constant gas temperature. The relative bias was also significantly increased with the decrease in gas temperature. Quantitatively, at the gas temperature of $20^{\circ}C$, the bare-bead TC had the relative bias of approximately 400% with the radiative heat flux of $20kW/m^2$ corresponding to thermal radiation level of the flashover. The present study was intend to provide fire researchers with methodologies for the reanalyses of temperature measured using bare-bead TC, radiation corrections, and validation of fire modeling.

Drift Self-compensating Type Flux-meter for Automatic Magnetic Flux Measurement

  • Ga, E.M.;Son, D.;Bak, J.G.;Lee, S.G.
    • Journal of Magnetics
    • /
    • 제8권4호
    • /
    • pp.160-163
    • /
    • 2003
  • In magnetic flux measurement, output voltage drift of electronic integrator is an essential problem. In this work, we have developed a new kind of Miller type integrator using a sample and hold amplifier. Input bias current was measured and this value was hold in the sample and hold amplifier, after that input bias current of Miller integrator was compensated automatically using the value which holds in the sample and hold amplifier. Developed flux-meter shows the drift of flux-meter are smaller than 10$^{-5}$ Wb/min in full scale of 10$^{-2}$, and we could also measure multi-channel magnetic flux simultaneously.

모사된 화재의 열적환경에서 FDS를 이용한 온도 예측오차에 관한 수치해석 연구 (A Numerical Study on Temperature Prediction Bias using FDS in Simulated Thermal Environments of Fire)

  • 한호식;김봉준;황철홍
    • 한국안전학회지
    • /
    • 제32권2호
    • /
    • pp.14-20
    • /
    • 2017
  • A numerical study was conducted to identify the predictive performance for the bare-bead thermocouple (TC) using FDS (Fire Dynamics Simulator) in simulated thermal environments of fire. A relative prediction bias of TC temperature calculated from reverse-radiation correction by FDS was evaluated with the comparison of previous experimental data. As a result, it was identified that the TC temperatures predicted by FDS were lower than the temperatures measured by bare-bead TC for the ranges of heat flux and gas temperature considered. The relative prediction bias of TC temperature by FDS was gradually increased with the increase in radiative heat flux and also significantly increased with the decrease in the gas temperature. Quantitatively, at the gas temperature of $20^{\circ}C$, the TC temperature predicted by FDS had the relative bias of approximately -20% with the radiative heat flux of $20kW/m^2$ corresponding to thermal radiation level of the flashover. It is predicted from the present study that more accurate validation of fire modeling will be possible with the quantitative prediction bias occurred in the process of reverse-radiation correction of temperature predicted by FDS.

Pumping-up Current Characteristics of Linear Type Magnetic Flux Pump

  • Chung, Yoondo;Muta, Itsuya;Hoshino, Tsutomu;Nakamura, Taketsune;Ko, Taekuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권2호
    • /
    • pp.29-34
    • /
    • 2004
  • The linear type flux pump aims to compensate a little bit decremental persistent current of the HTS magnet in NMR and MRI spectrometers. The flux pump mainly consists of DC bias coil, 3-phase AC coil and Nb foil. The persistent current in closed superconductive circuit can be easily adjusted by the 3-phase AC current, its frequency and the DC bias current. In the experiment, it has been investigated that the flux pump can effectively charge the current in the load coil of 543 mH for various frequencies in 18 minutes under the DC bias of 10 A and the AC of 5 $A_{rms}$. The maximum magnitudes of pumping current and load magnet voltage are 0.72 A/min and 20 ㎷, respectively. Based on simulation results by the FEM are proved to nearly agree with experimental ones.

펠티어 소자를 사용한 Low Drift Flux Meter의 기초연구 (A Basic Study on the Low Drift Flux Meter by Using a Peltier Device)

  • 김철한;허진;신광호;사공건
    • 한국전기전자재료학회논문지
    • /
    • 제14권11호
    • /
    • pp.912-916
    • /
    • 2001
  • Fluxmeter is a measuring instrument the magnetic flux intensity by means of an integration of the voltage induced to a search coil to unit time. It also is required to a precise integrator since the voltage induced to a search coil has a differential value of the flux ${\Phi}$ to unit time. In this study, a bias current which is a main problem of the integrator in a drift troublesome depending on the temperature of a FET is investigated. We have confirmed that the temperature dependence of both the bias current of a integrator using the FET and the reversal saturated current of the minor carrier in a P-N junction of a semiconductor were the same. The property of a commercial integrator goes rapidly down with increasing temperature. The bias current of a FET is increased twice as much with 10$^{\circ}C$ increment. As a result, the low drift integrator could be developed by setting the lower temperature up with a pottier device.

  • PDF

Operational Characteristics of Superconducting Amplifier using Vortex Flux Flow

  • Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권6호
    • /
    • pp.260-264
    • /
    • 2008
  • The operational characteristics of superconducting amplifier using vortex flux flow were analyzed from an equivalent circuit in which its current-voltage characteristics for the vortex motion in YBCO microbridge were reflected. For the analysis of operation as an amplifier, dc bias operational point for the superconducting amplifier is determined and then ac operational characteristics for the designed superconducting amplifier were investigated. The variation of transresistance, which describes the operational characteristics of superconducting amplifier, was estimated with respect to conditions of dc bias. The current and the voltage gains, which can be derived from the circuit for small signal analysis, were calculated at each operational point and compared with the results obtained from the numerical analysis for the small signal circuit. From our paper, the characteristics of amplification for superconducting flux flow transistor (SFFT) could be confirmed. The development of the superconducting amplifier applicable to various devices is expected.

반경방향-축방향 일체형 4극 전자기 베어링의 설계 (II) - 바이어스 자속 공유형 - (Design of Combined Radial and Axial 4-pole Electromagnetic Bearing (II) - with Coupled Bias Flux -)

  • 김하용;김승종
    • 대한기계학회논문집A
    • /
    • 제29권12권
    • /
    • pp.1567-1573
    • /
    • 2005
  • This paper introduces a new active magnetic bearing(AMB) that can provide both radial and axial control functions in one bearing unit without axial disk. It has a structure of double four-pole AMB or a four-pole AMB where each core is split into two axially. The cores have two kinds of coil winding; they independently generate fluxes on the planes perpendicular or parallel to the shaft. For the radial control action, it works just like a conventional four-pole AMB. Meanwhile, for the axial control, it uses the Lorentz force generated by the interaction of the bias flux for radial control and the axial control flux. In this paper, the proposed structure, principle, and design process based on magnetic flux analysis are introduced, and its feasibility is experimentally verified by using a simple PD control algorithm with a feedforward loop to compensate the coupled flux effect.

반경방향-축방향 일체형 4극 전자기 베어링의 설계 (I) - 바이어스 자속 독립형 - (Design of Combined Radial and Axial 4-pole Electromagnetic Bearing (I) - with Uncoupled Bias Flux -)

  • 김하용;김승종
    • 대한기계학회논문집A
    • /
    • 제29권12권
    • /
    • pp.1561-1566
    • /
    • 2005
  • In this paper, a new compact active magnetic bearing(AMB) is proposed in which radial and axial bearings are integrated in one bearing unit. It consists of four U-shaped cores circumferentially connected by yokes and two-layer coils for radial and axial controls. For the radial control action, it has the same principle as conventional homopolar AMBs, while for the axial control, it uses the Lorentz force generated by the interaction of the bias flux for radial control and the axial control flux. The proposed structure makes it easy to design a compact AMB because it has no disk for axial control. This paper introduces the proposed structure, principle, and design process based on the magnetic flux analysis. By using a control algorithm with feedforward action to compensate the coupled flux effect, the feasibility of the proposed AMB is experimentally verified.

영구자석 바이어스 자기부상 구동기 설계 및 해석 (Design and Analysis of a Permanent Magnet Biased Magnetic Levitation Actuator)

  • 나언주
    • 한국소음진동공학회논문집
    • /
    • 제26권7호
    • /
    • pp.875-880
    • /
    • 2016
  • A new hybrid permanent magnet biased magnetic levitation actuator (maglev) is developed. This new maglev actuator is composed of two C-core electromagnetic cores separated with two permanent magnets. Compared to the conventional hybrid maglev actuators, the new actuator has unique flux paths such that bias flux paths are separated with control flux paths. The control flux paths have minimum reluctances only developed by air gaps, so the currents to produce control fluxes can be minimized. The gravity load can be compensated with the permanent magnet bias fluxes developed at off-centered air gap positions while external disturbances are controlled with control fluxes by currents. The consumed power to operate this levitation system can be minimized. 1-D magnetic circuit model is developed for this model such that the flux densities and magnetic forces are extensively analyzed. 3-D finite element model is also developed to analyze the performances of the maglev actuator.

Measurement of local wall temperature and heat flux using the two-thermocouple method for a heat transfer tube

  • Ahn, Taehwan;Kang, Jinhoon;Jeong, Jae Jun;Yun, Byongjo
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1853-1859
    • /
    • 2019
  • The two-thermocouple method was investigated experimentally to evaluate its accuracy for the measurement of local wall temperature and heat flux on a heat transfer tube with an electric heater rod installed in an annulus channel. This work revealed that a thermocouple flush-mounted in a surface groove serves as a good reference method for the accurate measurement of the wall temperature, whereas two thermocouples installed at different depths in the tube wall yield large bias errors in the calculation of local heat flux and wall temperature. These errors result from conductive and convective changes due to the fin effect of the thermocouple sheath. To eliminate the bias errors, we proposed a calibration method based on both the local heat flux and Reynolds number of the cooling water. The calibration method was validated with the measurement of local heat flux and wall temperature against experimental data obtained for single-phase convection and two-phase condensation flows inside the tube. In the manuscript, Section 1 introduces the importance of local heat flux and wall temperature measurement, Section 2 explains the experimental setup, and Section 3 provides the measured data, causes of measurement errors, and the developed calibration method.