• Title/Summary/Keyword: BiTe

Search Result 316, Processing Time 0.026 seconds

Thermoelectric Property and p-n Transition Mechanism of Hot Pressed Bi4/3Sb2/3Te3 ($Bi_{4/3}Sb_{2/3}Te_3$ 가압소결체의 열전특성과 p-n 전이기구)

  • 박태호;유한일;심재동
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.855-862
    • /
    • 1992
  • Thermoelectric power, electrical conductivity and Hall effect were measured, as functions of temperature in the range of 100 to 600 K, on polycrystalline Bi4/3Sb2/3Te3 which had been prepared via uniaxial hot-pressing at different temperatures in the range of 373 K to 773 K, aiming at searching a profitable processing route to a polycrystalline thermoelectric material, a promising, viable alternative to a single crystalline one. It was found that, with increasing temperature of pressing under a fixed pressure, the material, normally a p-type prior to being hot-pressed, underwent a transition to n-type. This transition was confirmed to be due to plastic deformation during hot-pressing and interpreted as being attributed to the change of the major ionic defect BiTe' into TeBi˙at temperature high enough for structure elements mobility. Thermoelectric figure-of-merit of the hot-pressed material was discussed in connection with the p-n transition in addition to microstructure.

  • PDF

Morphology Controlled Synthesis of Nanostructured Bi2Te3

  • Kim, Hee Jin;Han, Mi-Kyung;Kim, Ha-Young;Lee, Wooyoung;Kim, Sung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3977-3980
    • /
    • 2012
  • Nanostructured thermoelectric bismuth telluride ($Bi_2Te_3$) powders with various morphologies, such as nanoplates, nanorods, and nanotubes, were prepared by a hydrothermal method based on the reaction between $BiCl_3$, Te, and sodium ethylenediaminetetraacetate ($Na_2$-EDTA) at 150, 180, and $210^{\circ}C$. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The effect of reaction temperature on the morphology of the $Bi_2Te_3$ particles was investigated, and the possible mechanism of morphology control was proposed.

Bi2Te3 나노구조의 합성에서 그래핀 층의 효과

  • Park, Sang-Jun;Nam, Jeong-Tae;Lee, Im-Bok;Bae, Dong-Jae;Kim, Geun-Su;Kim, Hwan-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.385.1-385.1
    • /
    • 2014
  • $Bi_2Te_3$는 전기적, 열적 특성 등이 아주 흥미로운 소재로, 열전소자 응용 및 위상절연체(Topologycal insulator: TI)로써의 연구가 활발히 진행되고 있는 소재이다. 한편, 전기적, 광학적, 기계적, 열적 특성들이 매우 뛰어나 신소재로 각광받고 있는 그래핀은 나노소재의 합성 분야에서도 기판으로 활용되어, 최근에는 그래핀을 기판으로 한 고품질 나노소재의 합성에 관한 연구보고가 증가하고 있다. 이에, 본 연구에서는 그래핀을 $SiO_2$에 전사한 기판 및 $SiO_2$ 기판 위에 $Bi_2Te_3$ 나노 구조를 합성하고 다양한 분석을 하였다. 라만 스펙트럼 및 XRD를 통해 $Bi_2Te_3$ 임을 확인하였고, 비정질 $SiO_2$기판과 결정질 그래핀/$SiO_2$기판 그리고 구리호일과 그래핀/구리 호일 위에서 합성된 $Bi_2Te_3$ 나노구조를 SEM 및 TEM을 이용하여 비교 분석 하였다. 또한 기초적인 전기물성을 평가하였다.

  • PDF

MOCVD of $Bi_2Te_3$-based thermoelectric materials and their material characteristics (MOCVD법으로 성장된 열전재료용 $Bi_2Te_3$ 박막의 특성)

  • Kim, Jeong-Hun;Jung, Yong-Chul;Suh, Sang-Hee;Ju, Byeong-Kwon;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.13-15
    • /
    • 2005
  • The growth of $Bi_2Te_3$ thin films on (001) GaAs substrates by metal organic chemical vapour deposition (MOCVD) is discussed in this paper. The results of surface morphology, electrical and thermoelectrical properties as a function of growth parameters are given. The surface morphologies of $Bi_2Te_3$ films were strong1y dependent on the deposition temperatures. Surface morphologies varied from step-flow growth mode to island coalescence structures depending on deposition temperature. In-plane carrier concentration and electrical Hall mobility were highly dependent on precursor's ratio of Te/Bi and deposition temperature. The high Seebeck coefficient (of $-160{\mu}VK^{-1}$) and good surface morphology of our result is promising for $Bi_2Te_3$ based thermoelectric thin film and two dimensional supperlattice device applications.

  • PDF

A Study on the Diffusion Barrier at the p/n Junctions of $Bi_{0.5}Sb_{1.5}Te_3/Bi_2Te_{2.4}Se_{0.6} p/n$ Thermoelectric Thin Films (열전 박막 $Bi_{0.5}Sb_{1.5}Te_3/Bi_2Te_{2.4}Se_{0.6} p/n$ 접합에서의 확산 장벽에 관한 연구)

  • Kim, Il-Ho;Lee, Dong-Hui
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.678-683
    • /
    • 1996
  • In the fabrication processes of thin film thermoelectrics, a subsequent annealing treatment is inevitable to reduce the defects and residual stresses introduced during the film growth, and to make the uniform carrier concentration of the film. However, the diffusion-induced atomic redistribution and the broadening of p/n junction region are expected to affect the thermoelectric properties of thin film modules. The present study intends to investigate the diffusion at the p/n junctions of thermoelectric thin films and to relate it to the property changes. The film junctions of p-type(Bi0.5Sb1.5Te3)and n-type(Bi2Te2.4Se0.6)were prepared by the flash evaporation method. Aluminum thin layer was employed as a diffusion barrier between p-and n-type films of the junction. This was found to be an effective barrier by showing a negligible diffusion into both type films. After annealing treatment, the thermoelectric properties of p/n couples with aluminum barrier layer were accordingly retained their properties without any deterioration.

  • PDF

Fabrication and Thermoelectric Properties of Carbon Nanotube/Bi2Te3 Composites (탄소나노튜브가 분산된 비스무스 텔루라이드 기지 복합재료의 제조 및 열전특성)

  • Kim, Kyung-Tae;Jang, Kyeong-Mi;Kim, Kyong-Ju;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.107-112
    • /
    • 2010
  • Carbon-nanotube-embedded bismuth telluride (CNT/$Bi_2Te_3$) matrix composites were fabricated by a powder metallurgy process. Composite powders, whereby 5 vol.% of functionalized CNTs were homogeneously mixed with $Bi_2Te_3$ alloying powders, were successfully synthesized by using high-energy ball milling process. The powders were consolidated into bulk CNT/$Bi_2Te_3$ composites by spark plasma sintering process at $350^{\circ}C$ for 10 min. The fabricated composites showed the uniform mixing and homogeneous dispersion of CNTs in the $Bi_2Te_3$ matrix. Seebeck coefficient of CNT/$Bi_2Te_3$ composites reveals that the composite has n-type semiconducting characteristics with values ranging $-55\;{\mu}V/K$ to $-95\;{\mu}V/K$ with increasing temperature. Furthermore, the significant reduction in thermal conductivity has been clearly observed in the composites. The results showed that CNT addition to thermoelectric materials could be useful method to obtain high thermoelectric performance.

The Electric and Thermal Properties of Spark Plasma Sintered Bi0.5Sb1.5Te3 (방전플라즈마 소결된 Bi0.5Sb1.5Te3의 열/전기적 특성)

  • Lee, Gil-Geun;Choi, Young-Hoon;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.285-290
    • /
    • 2012
  • The present study was focused on the analysis of the electric and thermal properties of spark plasma sintered $Bi_{0.5}Sb_{1.5}Te_3$ thermoelectric material. The crystal structure, microstructure, electric and thermal properties of the sintered body were evaluated by measuring XRD, SEM, electric resistivity, Hall effect and thermal conductivity. The $Bi_{0.5}Sb_{1.5}Te_3$ sintered body showed anisotropic crystal structure. The c-axis of the $Bi_{0.5}Sb_{1.5}Te_3$ crystal aligned in a parallel direction with applied pressure during spark plasma sintering. The degree of the crystal alignment increased with increasing sintering temperature and sintering time. The electric resistivity and thermal conductivity of the $Bi_{0.5}Sb_{1.5}Te_3$ sintered body showed anisotropic characteristics result from crystal alignment.

Thermoelectric Property of Ball Milled Bi-Te-Sb Powder (볼밀링한 Bi-Te-Sb계 분말의 열전특성에 관한 연구)

  • Yu Ji-Hun;Bae Seung-Chul;Ha Gook-Hyun;Kim Byoung-Kee;Lee Gil-Gun
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.387-392
    • /
    • 2005
  • The p-type semiconductor $Bi_2Te_3-Sb_2Te_3$ thermoelectric materials were fabricated by melting, milling and sintering process and their thermoelectric properties were characterized. The compound materials were ball-milled with milling time and the powders were sintered by spark plasma sintering process. The ball milled powders had equiaxial shape and approedmately $1\~3{\mu}m$ in size. The figure of meritz of sintered thermoelectric materials decreased with milling time because of lowered electrical resistivity. The thermoelectric properties of $Bi_2Te_3-Sb_2Te_3$ materials have been discussed in terms of electrical property with ball mill process.