• Title/Summary/Keyword: Bi-2223 Superconducting Wires

Search Result 32, Processing Time 0.023 seconds

A study on the superconducting properties of Bi-Pb-Sr-Ca-Cu-O superconducting wire with cooling conditions. (냉각 조건에 의한 Bi-Pb-Sr-Ca-Cu-O 초전도 선재의 특성 연구)

  • Kim, Min-Ki;Choi, Hyo-Sang;Choi, Sung-Hyan;Park, Sung-Jin;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.213-215
    • /
    • 1993
  • Silver-sheathed Bi-Pb-Sr-Ca-Cu-O wires by the powder-in-tube method were preparated to study on the superconducting properties with cooling conditions. Superconducting wires were cooled down in the furnace, air and liquid $N_2$ after sintering at $840^{\circ}C$. Critical current density of sample cooled in the furnace is $5.1{\times}10^3\;A/cm^2$ at 77K, zero magnetic field and Jc of sample cooled in the air is very low. 2223 high-Tc superconducting phase of sample cooled in the air was distroyed. Therefore, we knew that superconducting wire need to cool slowly to get the high critical current density.

  • PDF

A Study on the Quench Propagation Properties of Bi-2223 Wire cooled in Liquid Nitrogen (액체질소로 냉각된 Bi-2223 선재의 퀜치 전파 특성에 관한 연구)

  • Yoon Kyung Yong;Bae Duck Kweon;Ahn Min Cheol;Kang Hyung Ku;Lee Chan Joo;Yoon Yong Soo;Lee Sang Jin;Ko Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.1
    • /
    • pp.32-36
    • /
    • 2005
  • With the successful commercialization of Bi-2223 powder-in-tube wire , various attempts in the R & D of the high-Tc superconducting (HTS) magnets for high magnetic field applications are being implemented actively. Operating temperature of HTS magnet has to be maintained at the designed level but the magnetic energy and mechanical disturbance can cause unstable operational temperature of HTS magnet. Especially the generated heat energy of inner HTS winding Is apt to be accumulated . so the normal region appears in HTS winding. This paper deals with the quenching characteristics of three kinds of selected Bi-2223 wires : the High Current Density Wire (HC-A) and the High Strength Wire (HS-A) made by AMSC and HTS wire(HW-I) made by Innost The Innost wire has the highest minimum quench energy (MQE). The High Current Density Wire has the highest normal zone Propagation velocity (NZPV).

Manufacturing technology and R&D status of high temperature superconducting wire (고온초전도선재 제초기술과 개발 동향)

  • Oh, S.S.;Ha, D.W.;Ha, H.S.;Park, C.;Song, K.J.;Ko, R.K.;Kwon, Y.K.;Ryu, K.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.67-73
    • /
    • 2002
  • The development of high performance HTS wire is a key factor for various electrical applications of coils and cables. The purpose of this paper is to review and consider the main manufacturing technologies of HTS wire and its current status. A lot of efforts have been focused on the optimization of PIT parameters for Bi-2223/Ag wire. According to this, long Bi-2223 wires having Ic of 130 A were recently produced and their mass production has been underway in US. The current status performance of Bi-2223 wire is supposed to be used in power transmission cable because of its lower self-field property. Y-123 second generation conductor is extensively being developed throughout the world and many fabrication processes are competed with each other. 30 m-long Y-123 wire with Ic of 0.8 MA/$\textrm{cm}^2$ was recently fabricated using IBAD and PLD techniques in Japan. This result offers promise of scalable processing of practical multi-layer coated conductor.

  • PDF

Design and Fabrication of High-Tc Superconducting Field coils (고온초전도 계자코일의 설계 및 제작)

  • Baik, S.K.;Jang, H.M.;Ko, R.K.;Sohn, M.H.;Kwon, Y.K.;Ryu, K.S.;Jo, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.775-777
    • /
    • 2000
  • Superconducting racetrack coils are used in areas of generators, motors, wiggler magnets and so on. Especially now a days many advanced nations including U.S., Japan are developing high temperature superconducting(HTS) wire which has better performance than low temperature superconducting(LTS) wire. Most of HTS wires such as Bi-2223 are manufactured with PIT(Power In Tube Method) process, so the shape of the wire looks like tape different from LTS wire of round shape as normal conductors. Generally HTS racetrack coils are composed of a few partial double-pancake colis and then the double-pancakes are jointed each other according to their applications.

  • PDF

Current Sharing of Parallel Connected Bi-2223 High-$T_{c}$ Superconducting paths

  • Bae, Duck-Kweon;Hyoungku Kang;Ahn, Min-Cheol;Kim, Yeong-Sik;Yoon, Kyung-Yong;Yoon, Yong-Soo;Bae, Jun-Han;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.2
    • /
    • pp.20-24
    • /
    • 2004
  • Bi-2223 wire, the first-generation high temperature superconducting (HTS) wire, was successfully commercialized and various electrical machinery and equipment are actively being developed in many countries. Because its critical current is too small to realize the lossless conducting part of electric power system with a HTS wire, multi-HTS paths are used to enlarge the critical current of HTS system. Though the resistance generated in HTS wire by transport current is very small, the difference of it in multi-path is the additional reason which causes the non-uniform current sharing in multi-HTS path except the well known reason, the difference of inductance between each path. In this paper, experimental research on current sharing of multi-strand and multi-stacked HTS wire was implemented. The whole critical current of multi-HTS paths is not equal to sum of critical current of each path because of non-uniform current sharing occurred in this paths. It was verified experimentally that Bi-2223 wires have different resistance generated by same transport current even if they was manufactured in same progress of work. Current sharing phenomenon was affected by difference of resistance and self and mutual inductance.

The study of characteristic change versus a curvature radius of high Tc superconducting wire (고온 초전도 선재의 곡률반경에 따른 특성변화 연구)

  • 강형곤;김민기;최명호;최효상;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.34-37
    • /
    • 1994
  • .In this study, we measured Ic depending on a curvature radios of High Tc superconducting tapes which were made of a single wire, two and three WIT(wire in tube). Wires are manufactured by the process of press ins and sintering (150h, at 845$^{\circ}C$ ) for the growth of 2223 high Tc Bi superconducting phase. We know that Ic of a single wire decrease with reduction of a curvature radius. The maximum Ic of 2 WIT wire is 2.54 (A) and have a better characteristic than a single wire (0.89 A) at a curvature radius 75mm.

  • PDF

High-Tc Superconducting Levitation Magnet (고온초전도 자기부상 마그네트)

  • Bae, Duck-Kweon;Cho, Hung-Je;Kim, Bong-Seop;Jho, Jeong-Min;Sung, Ho-Kyung;Kim, Dong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.681-682
    • /
    • 2006
  • This paper deals with the preliminary study on the HTSC levitation magnet for MAGLEV operating in persistent current mode (PCM). The high temperature superconducting (HTSC) levitation magnet consists of two single-pancake type coils wound with Bi-2223 wire and a persistent current switch (PCS). The levitation magnet was designed by using 3-D finite element analysis. The suspension system for high-speed electrodynamic suspension (EDS) maglev should operated in persistent current mode. It is important to develop a technology to minimize the joint resistance of splice between two HTSC wires. The PCS was observed with respect to various magnitude of charging current. Based on these results, the levitation system using HTSC wire will be further studied.

  • PDF

Electrical and Mechanical Properties in High Tc Superconducting Wires for HTSC Cable (고온 초전도 케이블용 선재의 특성해석에 관한 연구)

  • Kim, Sang-Hyun;Jang, Hyun-Man;Jeong, Jong-Man;Kim, Young-Seok;Baek, Seung-Myong
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1050-1053
    • /
    • 1998
  • To be applied to electrical equipment HTSC tapes have to endure external stress and so on. The critical current density has been shown depending on the mechanical properties. strain and bending stress. AC loss reduction is primary concern in the development of such high-efficiency equipment. AC losses in Bi-2223 silver-sheathed tapes, both single and multi-filamentary, were investigated by means of AC magnetization techniques. The results were compared with the hysteresis loss equation based on Bean model and the eddy current loss equation. The AC loss of the mono-filamentary tape was the hysteresis. On the contrary, the AC loss of the multi-filamentary tape was substantially dominated by the eddy current loss in the Ag matrix.

  • PDF

Electrical and Mechanical Properties in High Tc Superconducting Wires for HTSC Cable (고온 초전도 케이블용 선재의 특성해석에 관한 연구)

  • Kim, Sang-Hyun;Jang, Hyun-Man;Jeong, Jong-Man;Kim, Young-Seok;Baek, Seung-Myong
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.702-705
    • /
    • 1998
  • To be applied to electrical equipment HTSC tapes have to endure external stress and so on. The critical current density has been shown depending on the mechanical properties, strain and bending stress. AC loss reduction is primary concern in the development of such high-efficiency equipment. AC losses in Bi-2223 silver-sheathed tapes, both single and multi-filamentary, were investigated by means of AC magnetization techniques. The results were compared with the hysteresis loss equation based on Bean model and the eddy current loss equation. The AC loss of the mono-filamentary tape was the hysteresis. On the contrary, the AC loss of the multi-filamentary tape was substantially dominated by the eddy current loss in the Ag matrix.

  • PDF

Electrical and Mechanical Properties in High Tc Superconducting Wires for HTSC Cable (고온 초전도 케이블용 선재의 특성해석에 관한 연구)

  • Kim, Seng-Hyun;Jang, Hyun-Man;Jeong, Jong-Man;Kim, Young-Seok;Baek, Seung-Myong
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.382-385
    • /
    • 1998
  • To be applied to electrical equipment HTSC tapes have to endure external stress and so on. The critical current density has been shown depending on the mechanical properties, strain and bending stress. AC loss reduction is primary concern in the development of such high-efficiency equipment. AC losses in Bi-2223 silver-sheathed tapes, both single and multi-filamentary, were investigated by means of AC magnetization techniques. The results were compared with the hysteresis loss equation based on Bean model and the eddy current loss equation. The AC loss of the mono-filamentary tape was the hysteresis. On the contrary, the AC loss of the multi-filamentary tape was substantially dominated by the eddy current loss in the Ag matrix.

  • PDF