• Title/Summary/Keyword: Bi-2223/Ag-Au tapes

Search Result 7, Processing Time 0.023 seconds

Effects of Ag-alloy sheath on thermal/electrical conductivity of Bi-2223 superconductor tapes (피복합금을 사용한 Bi-2223 선재의 열전도도 및 전기전도도 특성평가)

  • ;;;;;John Slavko Volf;Hua Kun Liu;Miles Apperley
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.180-183
    • /
    • 2003
  • We evaluated the effect of alloying-element additions to Ag sheath on thermal conductivity of Bi-2223 superconductor tapes. In order to evaluate the effect of sheath alloys and their configuration on the properties of tape, various combinations of Ag and Ag alloys were selected as inner and outer sheath. Thermal conductivity of the tapes was measured by using thermal integral method at 10∼120 K. It is observed that the presence of alloying-elements such as Mg, Sb, and Au in Ag sheath results in decreased thermal conductivity at low temperature. Specifically, the thermal conductivity of AgMg, AgSb, and AgAu at 40 K were 411.4, 142.3, and 109.7 W/(m·K), respectively, which is about 2∼9 times lower than that of Ag (1004.6 W/(m·K)). In addition, the thermal conductivity of alloy-sheathed tape was significantly dependent on their values of constituent sheath materials.

  • PDF

The Effects of Alloying-Element Additions to Ag Sheath on Thermal Conductivity and Properties of Bi-2223 Superconductor Tapes (합금원소 첨가에 따른 Ag 피복 Bi-2223 초전도 선재의 열전도도 측정 및 특성평가)

  • ;;;;;;John Slavko Volf;Hua Kun Liu;Miles Apperley
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.627-633
    • /
    • 2003
  • The effects of alloying-element additions to Ag sheath on thermal conductivity and mechanical properties of Bi-2223 superconductor tapes have been evaluated. In order to evaluate the effects of sheath alloys and their configuration on the properties of tape, various combinations of Ag and Ag alloys were selected as the inner and outer sheath. Thermal conductivity of the tapes was evaluated by using thermal integral method at 10 ∼120 K. It was observed that the addition of Mg, Sb, and Au to Ag sheath significantly decreased the thermal conductivity at low temperature probably due to the alloying effect. Specifically, the thermal conductivity of AgMg, AgSb, and AgAu at 40 K were 411.4, 142.3, and 109.7 W/(m·K), respectly, which is about 2∼9 times lower than that of Ag (1004.6 W/(m·K)). In addition, the thermal conductivity of alloy-sheathed tape was significantly dependent on their thermal conductivities of constituent sheath materials. The mechanical properties of alloy-sheathed tapes were also evaluated. Yield strength and tensile strength were improved but workability decreased for alloy-sheathed tapes.

Design and Test Results of 6-kA HTS-Copper Current Leads with HTS Section Operating in the Current-Sharing Mode

  • Lee, Haigun;Kim, Ho-Min;Yukikazu Iwasa;Kim, Keeman;Paul Arakawa;Greg Laughon
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.100-108
    • /
    • 2003
  • This paper presents the design and performance results of a pair of 6-kA high-temperature superconducting (HTS)-copper current leads, in which, over a short length at the warm end (e.g.,77K) of each HTS section, comprised of paralleled Bi-2223/Ag-Au tapes, is operated in the current-sharing mode. Because of their reliance on vapor cooling, the leads are applicable only to liquid helium cooled superconducting magnets such as those used in high-energy Physics accelerators and fusion machines. The experimental measurements have demonstrated that key performance data of the new 6-kA HTS-Copper leads agree reasonably well with those expected from design.

AC Loss Measurement and Analysis of Ag-sheathed Bi-2223 Conductors in Terms of Eddy Currents and Flux Creep

  • Jang, Mi-Hye
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.6
    • /
    • pp.211-215
    • /
    • 2003
  • Alternating current (AC) losses of two Bi-2223 ([Bi, Pb] : Sr : Ca : Cu :O = 2:2:2:3) tapes [one untwisted (Tape I, twist-pitch of $\infty$ mm) and the other with a twist-pitch of 8mm (Tape II) ] were measured and compared. These samples, produced by the powder-in-tube (PIT) method, are multi-filamentary and have a Ag/Au and Ag matrix, respectively. Susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation.

Design and manufacture of Bi-2223 HTS current leads for SMES magnet

  • Oh, S.S.;Cho, J.W.;Ha, H.S.;Sim, K.D.;Ha, D.W.;Seong, K.C.;Kwon, Y.K.;Ryu, K.S.;Kim, S.H.;Jang, H.M.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.236-240
    • /
    • 2000
  • Bi-2223 HTS current leads for a superconducting magnetic energy storage(SMES) magnet were designed and manufactured. The HTS leads composed of Bi-2223/AgAu tapes and stainless steel former were connected to conventional vapor-cooled copper leads. The heat input to the liquid helium through the HTS lead was 0.39 W/lead when the warm end part's temperature is 65 K. And, the critical current of the HTS leads was about 1.6 kA when the warm end part's temperature is 80 K. The measured those values are well consistent with computed values.

  • PDF

Design of HTS Current Lead for SMES Magnet (SMES 마그네트용 고온초전도 전류도입선 설계)

  • Jang, Hyeon-Man;O, Sang-Su;Jo, Jeon-Uk;Jo, Yeong-Sik;Ha, Hong-Su;Ha, Dong-U;Seong, Gi-Cheol;Gwon, Yeong-Gil;Ryu, Gang-Sik;Kim, Sang-Hyeon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.2
    • /
    • pp.6-10
    • /
    • 2000
  • 1.5 kA class HTS current leads for a SMES magnet, which are connected to a conventional vapor cooled copper leads, were designed. The HTS leads are composed of Bi-2223/Ag-Au tapes and a stainless stell tube. The estimated critical current of the lead is about 1.6 kA at 77.3 K and in a self magnetic field, and the heat input to the liquid helium from the cold end of the 35 cm lead is 0.4 W/lead. It has been made clear that the heat input decreases with increase of the lead length and decrease of the warm end temperature and Ag-Au/SC ratio.

  • PDF

The Electromagnetic Field Analysis and the Design of HTS Current Lead for SMES (SMES용 고온초전도 전류도입선의 전자계 해석 및 형상설계)

  • 장현만;오상수;조영식;조전욱;하홍수;하동우;권영길;성기철;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.136-138
    • /
    • 2000
  • 1.5kA HTS current leads for a superconducting magnetic energy storage(SMES) magnet, which are connected to a conventional vapor cooled copper leads, were designed. The HTS lead composed of cylindrically arranged Bi-2223/Ag-1 at5Au tapes and a stainless steel tube. The minimum operating current of the lead is 1.71 kA at 77.3K, self magnetic field, and the heat input to the liquid helium from the clod end of the 36 cm lead is 0.5 W/lead.

  • PDF