• Title/Summary/Keyword: Bi 2201 phase

Search Result 57, Processing Time 0.022 seconds

Analysis of Sticking Coefficient in BSCCO Superconductor Thin Film Fabricated by Co-deposition (공증착법으로 제작한 BSCCO 초전도 박막의 부착계수 해석)

  • An, In-Soon;Chun, Min-Woo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.300-303
    • /
    • 2001
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below $730^{\circ}C$ and decreases linearly with temperature over $730^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, $Bi_{2}O_{3}$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi 2212 phase formation in the co-deposition process.

  • PDF

Evaluation of Sticking Coefficient in BSCCO Thin Film Fabricated by Co-sputtering

  • Lee, Hee-Kab;Park, Yong-Pil;Lee, Kwon-Hyun;Lee, Joon-Ung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.1
    • /
    • pp.80-84
    • /
    • 2000
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coeffi-cient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below 73$0^{\circ}C$ and decreases linearly with temperature over 73$0^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, Bi\ulcornerO\ulcorner, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF

Analysis of Sticking Coefficient in BSCCO Superconductor Thin Film Fabricated by Co-deposition (공증착법으로 제작한 BSCCO 초전도 박막의 부착계수 해석)

  • 안인순;천민우;박용필
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.300-303
    • /
    • 2001
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below 730$^{\circ}C$ and decreases linearly with temperature over 730$^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, Bi$_2$O$_3$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi 2212 phase formation in the co-deposition process.

  • PDF

Characteristics of Thin Films Fabricated by Using the Layer-by-Layer Sputtering and Evaporation Method (순차 스퍼터 법과 증발 법으로 제작한 박막의 특성)

  • Cheon, Min-Woo;Park, Yong-Pil;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.571-574
    • /
    • 2003
  • The thin films fabricated by using the layer-by-layer sputtering was compared with the thin film fabricated by using the evaporation method. Re-evaporation in the form of Bi atoms or $Bi_2O_3$ molecules easily bring out the deficiency of Bi atoms in thin film due to the long sputtering time of the layer-by-layer deposition. On the other hand, the respective atom numbers corresponding to BiSrCaCuO phase is concurrently supplied on the film surface in the evaporation deposition process and leads to BiSrCaCuO phase formation. Also, it is cofirmed that by optimizing the deposition condition, each single phase of the Bi2201 phase and the Bi2212 phase can be fabricated, the sticking coefficient of Bi element is clearly related to the changing of substrate temperature and the formation of the Bi2212 phase.

  • PDF

Thermodynamics for Formation of Each Stable Single Phase in BSCCO Thin Films

  • Yang, Sung-Ho;Park, Yong-Pil;Kim, Gwi-Yeol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.104-105
    • /
    • 2000
  • High quality BSCCO thin films have been fabricated by means of an ion beam sputtering at various substrate temperatures, T$_{sub}$, and ozone gas pressures, PO$_3$. The correlation diagrams of the BSCCO phases appeared against T$_{sub}$ and PO$_3$are established in the 2212 and 2223 compositional films. In spite of 2212 compositional sputtering, Bi2201 and Bi2223 phases as well as Bi2212 one come out as stable phases depending on T$_{sub}$ and PO$_3$. From these results, the thermodynamic evaluations of ΔH and ΔS which are related with Gibbs'free energy change for single Bi2212 or Bi2223 phase are performed.ormed.i2212 or Bi2223 phase are performed.

  • PDF

A Study on Formation of Single-phase Film in the Bi-2212 Superconducting Thin Films Substrate Temperature and Oxide Gas Pressures (기판온도와 산화가스압에 따른 Bi-2212 초전도 박막의 단상막 형성에 관한 연구)

  • Yang, Seung-Ho;Lee, Hee-Kab;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.484-485
    • /
    • 2007
  • BiSrCaCuO superconducting thin films have been fabricated by co-deposition using the faraday cup. Despite setting the composition of thin film Bi2212, Bi(2201, 2212, 2223) phase were appeared. It was confirmed the obtained field of stabilizing phase was represented in the diagonal direction of the right below end in the Arrhenius plot of temperature of the substrate and $PO_3$, and it was distributed in the rezone.

  • PDF

Phase Stability of Bi2212 and Bi2223 Thin Films Fabricated by Ion Beam Sputtering

  • Lee, Hee-Kab;Park, Yong-Pil;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.108-111
    • /
    • 2000
  • Bi2212 and Bi2223 thin films are fabricated by ion beam sputtering method. Three phases of Bi2201, Bi2212 and Bi2223 appear as stable ones in spite of the condition for thin film fabrication of Bi2212 and bi2223 compositions, depending on substrate temperature(T$\sub$sub/) and ozone pressure (PO$_3$). It is found out that these phases show similar T$\sub$sub/ and PO$_3$dependence, and that the stable regions of these phases are limited within very narrow temperature.

  • PDF

Phase Stability Region of Bi-superconductor Thin Films Prepared by IBS Technique (이온빔 스퍼터법으로 제작한 Bi 초전도 박막의 상안정 영역)

  • Lim, Jung-Kwan;Chun, Min-Woo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.308-311
    • /
    • 2001
  • Bi-2212 and Bi-2223 thin films are prepared by IBS(ion beam sputtering) technique. Three phases of Bi-2201, Bi-2212 and Bi-2223 appear as stable ones in spite of the conditions for thin film fabrication of Bi-2212 and Bi-2223 compositions, depending on substrate temperature($T_{sub}$) and ozone pressure( $PO_3$ ). It is found out that these phases show similar $T_{sub}$ and $PO_3$ dependence, and that the stable regions of these phases are limited within very narrow temperature.

  • PDF

Phase Stability Region of Bi-superconductor Thin Films Prepared by IBS Technique (이온빔 스퍼터법으로 제작한 Bi 초전도 박막의 상안정 영역)

  • 임중관;천민우;박용필
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.308-311
    • /
    • 2001
  • Bi-2212 and Bi-2223 thin films are prepared by IBS(ion beam sputtering) technique. Three phases of Bi-2201, Bi-2212 and Bi-2223 appear as stable ones in spite of the conditions for thin film fabrication of Bi-2212 and Bi-2223 compositions, depending on substrate temperature($T_{sub}$) and ozone pressure(PO$_3$). It is found out that these phases show similar $T_{sub}$ and PO$_3$ dependence, and that the stable regions of these phases are limited within very narrow temperature.

  • PDF

Phase Stability of Bi2212 and Bi2223 Thin Films Fabricated by ion Beam Sputtering

  • Lee, Hee-Kab;Park, Yong-Pil;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.108-111
    • /
    • 2000
  • Bi2212 and Bi2223 thin films are fabricated by ion beam sputtering method. Three phases of Bi2201, Bi2212 and Bi2223 appear as stable ones in spite of the condition for thin film fabrication of Bi2212 and bi2223 compositions, depending on substrate temperature(T$\sub$sub/) and ozone pressure (PO$_3$). It is found out that these phases show similar T$\sub$sub/ and PO$_3$ dependence, and that the stable regions of these phases are limited within very narrow temperature.

  • PDF