• Title/Summary/Keyword: Bi 2201 phase

Search Result 57, Processing Time 0.027 seconds

Analysis of the Staking Fault in Crystalline Phase of Thin Films Fabricated by $Bi_2Sr_2Ca_1Cu_2O_x$ Composition ($Bi_2Sr_2Ca_1Cu_2O_x$ 조성으로 제작된 박막의 결정상에 대한 고용비 해석)

  • Yang, Seung-Ho;Lee, Ho-Shik;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.524-527
    • /
    • 2007
  • [ $Bi_2Sr_2Ca_{n-1}Cu_nO_x$ ](n=0, 1, 2) thin films have been fabricated by co-deposition at an ultra-low growth rate using ion beam sputtering(IBS) method. Bi 2212 phase appeared in the temperature range of 750 and $795^{\circ}C$ and single phase of Bi 2201 existed in the lower region than $785^{\circ}C$. Whereas, $PO_3$ dependance on structural formation was scarcely observed regardless of the pressure variation. And high quality of c-axis oriented Bi 2212 thin film with $T_c$(onset) of about % K and $T_c$(zero) of about 45 K is obtained. Only a small amount of CuO in some films was observed as impurity, and no impurity phase such as $ CaCuO_2$ was observed in all of the obtained films.

  • PDF

Influence of the Solid Solution for Crystalline Phase on the Characterization of $Bi_2Sr_2Ca{_{n-1}}Cu_nO_x$(n=0,1,2) Thin Films (결정상에 대한 고용체가 $Bi_2Sr_2Ca{_{n-1}}Cu_nO_x$(n=0,1,2) 박막의 특성에 미치는 영향)

  • Yang, Seung-Ho;Lee, Ho-Shik;Park, Yong-Pil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1115-1121
    • /
    • 2007
  • [ $Bi_2Sr_2Ca{_{n-1}}Cu_nO_x$ ](n=0,1,2) thin fans have been fabricated by co-deposition at an ultra-low growth rate using ion beam sputtering(IBS) method. Bi 2212 phase appeared in the temperature range of 750 and $795^{\circ}C$ and single phase of Bi 2201 existed in the lower region than $785^{\circ}C$. Whereas, $PO_3$ dependance on structural formation was scarcely observed regardless of the pressure variation. And high quality of c-axis oriented Bi 2212 thin film with $T_c$(onset) of about 90 K and $T_c$(zero) of about 45 K is obtained. Only a small amount of CuO in some films was observed as impurity, and no impurity phase such as $CaCuO_2$ was observed in all of the obtained films.

Phase Intergrowth in the Syntheses of Bi-superconducting Thin Films

  • Chun, Min-Woo;An, In-Soon;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.490-493
    • /
    • 2002
  • Phase intergrowth some kinds of the Bi$_2$Sr$_2$Ca$\_$n-1/Cu$\_$n/O$\_$y/ phases is observed in the thin film fabrication at ultralow co-deposition with multi targets by means of ion beam sputtering. The molar fraction of the Bi2212 phase in the mixed crystal of the grown films is investigated as a function of the applied ozone pressure and the substrate temperature. The activation energy for the phase transformation from the Bi2201 to the Bi2212 is estimated in terms of the Avrami equation. This study reveals that the formation of a liquid phase contributes significantly to the construction of the Bi2212 phase in the thin films, differing from the bulk synthesis.

  • PDF

The Influence of Bi-Sticking Coefficient in Bi-2212 Thin Film

  • Lee, Hee-Kab;Park, Yong-Pil;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.152-156
    • /
    • 2000
  • Bi-thin films are fabricated by an ion beam sputtering, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below $730^{\circ}C$ and decreases linearly with temperature over $730^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, $Bi_2O_3$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF

Phase Intergrowth in the Syntheses of BSCCO Thin Films

  • Park, No-Bong;Park, Yong-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.736-741
    • /
    • 2002
  • Phase intergrowth some kinds of the $Bi_2Sr_2Ca_{n-1}Cu_nO_y$ phases is observed in the thin film fabrication at ultralow co-deposition with multi targets by means of ion beam sputtering. The molar fraction of the Bi2212 phase in the mixed crystal of the grown films is investigated as a function of the applied ozone pressure and the substrate temperature. The activation energy for the phase transformation from the Bi2201 to the Bi2212 is estimated in terms of the Avrami equation. This study reveals that the formation of a liquid phase contributes significantly to the construction of the Bi2212 phase in the thin films, differing from the bulk synthesis.

Bi-sticking Coefficient of Bi-superconducting Thin Film Prepared by IBS Method

  • Lee, Hee-Kab;Lee, Joon-Ung;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.213-216
    • /
    • 1999
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristics temperature dependence : almost a constant value of 0.49 below 730$^{\circ}C$ and decreases linearly with temperature over 730$^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, Bi$_2$O$_3$ from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF

Phase Stability Region of BiSrCaCuO Superconduction Thin Films Fabricated by Ion Beam Sputtering Method (이온 빔 스퍼터법으로 제작한 BiSrCaCuO 초전도 박막의 상안정 영역)

  • Yang, Sung-Ho;Park, No-Bong;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.49-52
    • /
    • 2003
  • BiSrCaCuO superconducting thin films have been fabricated by co-deposition using IBS(Ion Beam Sputtering) method. Despite setting the composition of thin film Bi2212 or Bi2223, in both cased, Bi2201, Bi2212 and Bi2223 phase were appeared. It was confirmed the obtained field of stabilizing phase was represented in the diagonal direction of the right below end in the Arrhenius plot of temperature of the substrate and $PO_3$ and it was distributed in the reeone.

  • PDF

Sticking Coefficient in Bi-thin Film Prepared by IBS Method

  • Yang, Sung-Ho;Park, Yong-Pil;Chun, Min-Woo;Park, Sung-Gyun;Park, Woon-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.193-197
    • /
    • 2000
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below 73$0^{\circ}C$ and decreases linearly with temperature over 73$0^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, Bi$_2$O$_3$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF

Phase Stability Region of Bi System Superconducting Thin films Fabricated by Ion Beam Sputtering Method with Crucible (도가니를 이용해서 IBS법으로 제작한 Bi계 초전도 박막의 상안정 영역)

  • Yang, Sung-Ho;Kim, Jong-Seo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1204-1207
    • /
    • 2003
  • BiSrCaCuO superconducting thin films have been fabricated by co-deposition using IBS(ion Beam Sputtering) method. Despite setting the composition of thin film Bi2212 or Bi2223, in both cases, Bi2201, Bi2212 and Bi2223 phase were appeared. It was confirmed the obtained field of stabilizing phase was represented in the diagonal direction of the right below end in the Arrhenius plot of temperature of the substrate and $PO_3$, and it was distributed in the rezone.

  • PDF

Superconducting Characteristics of Bi Thin Films Fabricated by Ion Beam Sputtering (이온빔 스퍼터법으로 제작한 Bi 박막의 초전도 특성)

  • 이희갑;박용필;오금곤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.222-225
    • /
    • 2000
  • BSCCO thin films have been fabricated by co-deposition at an ultralow growth rate using ion beam sputtering(IBS) method. Bi 2212 phase appeared in the temperature range of 750 and $795^{\circ}C$ and single phase of Bi 2201 existed in the lower region than $785^{\circ}C$. Whereas, $Po_3$ dependance on structural formation was scarcely observed regardless of the pressure variation. And high quality of c-axis oriented Bi 2212 thin film with $T_c$ (onset) of about 90 K and $T_c$(zero) of about 45 K is obtained. Only a smd amount of CuO in some films was observed as impurity, and no impurity phase such as $CaCuO_2$ was observed in d of the obtained films.

  • PDF