• Title/Summary/Keyword: Betazon

Search Result 2, Processing Time 0.02 seconds

Pollution of Agricultural Environment I. Adsorption of Several Herbicide on Soils and Theoretical Evaluation (농업환경(農業環境)의 오염(汚染)과 그 대책(對策) 제(第) 1 보(報) 몇가지 제초제(除草劑)에 의한 토양(土壤) 흡착(吸着)의 이론적분석(理論的分析))

  • Han, Dae-Sung;Kim, Jeong-Je;Shin, Young-Oh
    • Korean Journal of Environmental Agriculture
    • /
    • v.3 no.1
    • /
    • pp.22-29
    • /
    • 1984
  • The Freundlich-type adsorption isotherms were obtained in this study on the adsorption of linuron, bentazon, trifluralin and butachlor by soils. A strong correlation was shown between soil organic matter content and the adsorption of linuron. Soils with high organic matter content adsorbed more linuron. There was no significant correlation between the adsorption of bentazon and clay content. There was a tendency that increase in organic matter content acts against the adsorption of bentazon. Repulsive forces seemed to exist between negatively charged soil particle surfaces and betazon molecules which become weakly charged negative ions in soil solution. Organic matter content and cation exchange capacity appeared to be enhancing the adsorption of trifluralin and butachlor. Clay content was not significantly correlated with the adsorption of these herbicides. Trifluralin was adsorptive to the greatest extent, followed by linuron and butachlor, bentazon being the least.

  • PDF

Antagonistic Mode of Action of Fenoxaprop-P-ethyl Phytotoxicity with Bentazon (Fenoxaprop-P-ethyl의 제초활성에 대한 Bentazon의 길항작용기구)

  • Ma, S.Y.;Kim, S.W.;Chun, J.C.
    • Korean Journal of Weed Science
    • /
    • v.18 no.2
    • /
    • pp.161-170
    • /
    • 1998
  • Antagonistic mode of action of fenoxaprop-P-ethyl [ethyl(R)2-4-{(6-chloro-2-benzoxazolyloxy) phenoxy}propionate] with bentazon was investigated with respect to absorption, translocation, metabolism, and change in target site response of fenoxaprop-P-ethyl using four-leaf stage of rice(Oryza sativa L.) and barnyardgrass [Echinochloa eras-galli (L.) P. Beauv.]. Shoots of rice and barnyardgrass was more sensitive to fenoxaprop-P-ethyl than the roots. More than 90% of fenoxaprop-P-ethyl was absorbed within 6 hours after treatment and 30% of the absorbed was acropetally and basipetally translocated at 24 hours after treatment. Fenoxaprop-P-ethyl was rapidly transformed to its acid form, fenoxaprop(2-[4-(6-chloro-2-benzoxazolyloxy)phenoxy]propionic acid), which was subsequently metabolized to polar conjugates. However, changes in absorption, translocation, and metabolism of fenoxaprop-P-ethyl by bentazon treatment were not found in both species. Background activity of acetyl-CoA carboxylase(ACCase) in rice and barnyardgrass was 26.5 and 23.2nmol/min/mg, respectively. Concentration required to inhibit fifty percent enzyme activity$(I_{50})$ in vitro was 6.5~7.4${\mu}M$ of fenoxaprop-P-ethyl and more than 500${\mu}M$ of bentazon. There were no significant differences in $I_{50}$ value between two treatments of fenoxaprop-P-ethyl alone and its bentazon mixture. However, bentazon reduced ACCase activity in vivo and inhibited electron transport in chloroplast thylakoid. Based on the results obtained, it is concluded that the antagonistic effect of bentazon occurs due not to direct effect on target site of fenoxaprop-P-ethyl, but to indirect involvement in reducing herbicidal activity of fenoxaprop-P-ethyl through physiological disturbances caused by bentazone at whole chloroplast level.

  • PDF