• Title/Summary/Keyword: Beta-gamma coincidence counting system

Search Result 3, Processing Time 0.018 seconds

Optimization of Acquisition Time of Beta-Gamma Coincidence Counting System for Radioxenon Measurement (방사성제논 탐지를 위한 베타-감마 동시 계측시스템의 측정시간 최적화)

  • Byun, Jong-In;Park, Hong-Mo;Choi, Hee-Yeoul;Song, Myeong-Han;Yun, Ju-Yong
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.3
    • /
    • pp.181-186
    • /
    • 2015
  • Measurement of xenon radioisotopes from nuclear fission is a key element for monitoring underground nuclear weapon tests. $^{131m}Xe$, $^{133}Xe$, $^{133}mXe$ and $^{135}Xe$ in the air can be detected via low background systems such as a beta-gamma coincidence counting system. Radioxenon monitoring is performed through air sampling, xenon extraction, measurement and spectrum analysis. The minimum detectable concentration of $^{135}Xe$ can be significantly variable depending on the sampling time, extraction time and data acquisition time due to its short half-life. In order to optimize the acquisition time with respect to certain experimental parameters such as sampling and xenon extraction, theoretical approach and experiment using SAUNA system were performed to determine the time to minimize the minimum detectable concentration, which the results were discussed.

An Improved Movable 3 photomultiplier (3PM)-γ Coincidence Counter Using Logical Sum of Double Coincidences in β-Channel for Activity Standardization

  • Hwang, Han Yull;Lee, Jong Man
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.76-80
    • /
    • 2020
  • Background: To improve the measurement accuracy of liquid-scintillation counting for activity standardization, it is necessary to significantly reduce the background caused by thermal noise or after-pulses. We have therefore improved a movable 3 photomultiplier (3PM)-γ coincidence-counting method using the logical sum of three double coincidences for β events. Materials and Methods: We designed a new data-acquisition system in which β events are obtained by counting the logical sum of three double coincidences. The change in β-detection efficiency can be derived by moving three photomultiplier tubes sequentially from the liquid-scintillation vial. The validity of the method was investigated by activity measurement of 134Cs calibrated at the Korea Research Institute of Standards and Science (KRISS) with 4π(PC)β-γ(NaI(Tl)) coincidence counting using a proportional counter (PC) for the β detector. Results and Discussion: Measurements were taken over 14 counting intervals for each liquidscintillation sample by displacing three photomultiplier tubes up to 45 mm from the sample. The dead time in each β- and γ-counting channel was adjusted to be a non-extending type of 20 ㎲. The background ranged about 1.2-3.3 s-1, such that the contributions of thermal noise or after-pulses were negligible. As the β-detection unit was moved away from the sample, the β-detection efficiencies varied between 0.54 and 0.81. The result obtained by the method at the reference date was 396.3 ± 1.7 kBq/g. This is consistent with the KRISS-certified value of 396.0 ± 2.0 kBq/g within the uncertainty range. Conclusion: The movable 3PM-γ method developed in the present work not only succeeded in reducing background counts to negligible levels but enabled β-detection efficiency to be varied by a geometrical method to apply the efficiency extrapolation method. Compared with our earlier work shown in the study of Hwang et al. [2], the measurement accuracy has much improved. Consequently, the method developed in this study is an improved method suitable for activity standardization of β-γ emitters.

Absolute $^{56}Mn$ Activity Measurement by $4{\pi}{\beta}-{\gamma}$ Conincidence Counting Technique ($4{\pi}{\beta}-{\gamma}$ 동시계수기술에 의한 $^{56}Mn$방사능 절대측정)

  • Hwang, Sun-Tae;Choi, Kil-Oung;Oh, Pil-Jae;Lee, Kyung-Ju;Lee, Kun-Jai
    • Journal of Radiation Protection and Research
    • /
    • v.12 no.2
    • /
    • pp.19-27
    • /
    • 1987
  • In order to determine the $^{56}Mn\;{\gamma}$-detection efficiency of a $MnSO_4$ bath system, it is essential to do the absolute activity measurement of $^{56}Mn$ solution. For the fabrication of $^{56}Mn$ samples, a 13.718 mg of $^{56}Mn$ metal flake with 99.99% purity was irradiated for 12 minutes at the thermal neutron field of about $10^{13}n/cm^2s$ of flux density. The neutron activated $^{56}Mn$ metal sample was dissolved in 50 ml of 0.1 N-HCl solution. The $^{56}Mn$ samples were fabricated by using the dissolved stock solution and the activity of each of them was measured by the $4{\pi}{\beta}-{\gamma}$ coincidence counting technique. The obtained result was 408.070 kBq/mg with total uncertainty of 0.366% at reference date, 0 h on October 15, 1987.

  • PDF