• Title/Summary/Keyword: Beta-amyloid

Search Result 436, Processing Time 0.024 seconds

Effects of Ginseng Radix plus Crataegi Fructus on the injury of brain tissue in the mice with Alzheimer's disease induced by ${\beta}$ amyloid peptide(${\beta}A$). (인삼산사복합방(人蔘山査複合方)이 Alzheimer성 치매 병태(病態) 생쥐의 뇌조직 손상에 미치는 효과)

  • Han, Sin-Hee;Kil, Gi-Jung
    • The Korea Journal of Herbology
    • /
    • v.21 no.4
    • /
    • pp.123-131
    • /
    • 2006
  • Objectives : This research was investigated the effect of the Ginseng Radix plus Crataegi Fructus on the injury of brain tissue in the mice with Alzheimer's disease induced by ${\beta}A$. Methods : Observed a change of the injury of brain tissue and reduced the infarction area of hippocampus in the mice with Alzheimer's disease induced by ${\beta}A$. Results : 1. The Gin-CF extract reduced the infarction area of hippocampus, and controlled the injury of brain tissue in the mice with Alzheimer's disease induced by ${\beta}A$. 2. The Gin-CF extract reduced the Tau protein, GFAP protein, and presenilin1/presenilin2 protein (immunohistochemistry) of hippocampus in the mice with Alzheimer's disease induced by ${\beta}A$. Conclusion : These results suggest that the Ginseng Radix plus Crataegi Fructus extract may be effective for the prevention and treatment of Alzheimer's disease. Investigation into the clinical use of the Ginseng Radix plus Crataegi Fructus extract for Alzheimer's disease is suggested for future research.

  • PDF

Ameliorating Effects of Cheongnoemyeongsin-hwan on Learning and Memory Impairment Induced by Cerebral Hypoperfusion in Rats (청뇌명신환(淸腦明神丸)이 뇌혈류저하 흰쥐의 학습 및 기억 장애 개선에 미치는 영향)

  • Chang, Suk Hee;Hwang, Won Deuk
    • Herbal Formula Science
    • /
    • v.25 no.1
    • /
    • pp.69-87
    • /
    • 2017
  • Objectives : Cheongnoemyeongsin-hwan (CNMSH) is a herb medicine to treat cognitive impairment. This study was investigated the effects of CNMSH on learning and memory impairment induced by cerebral hypoperfusion. Cerebral hypoperfusion was produced chronically by permanent bilateral common carotid artery occlusion (BCCAO) in rats. Methods : CNMSH was administered orally once a day (250 mg/kg) for 28 days starting at 4th week after the BCCAO. The acquisition of learning and the retention of memory were tested on 9th week after the BCCAO using the Morris water maze. In addition, effect of CNMSH on neuronal apoptosis and ${\beta}-amyloid$ accumulation in the hippocmapus was evaluated with immunohistochemistry and Western blotting. Results : 1. CNMSH and ChAL significantly shortened the escape latencies on the 2nd day of acquisition training trials. 2. ChAL significantly prolonged the swimming time spent in the target and peri-target zones and CNMSH also significantly prolonged the swimming time spent in the peri-target zone. 3. CNMSH and ChAL significantly increased the number of target heading in the retention test. 4. ChAL significantly shortened the time of the 1st target heading in the retention test, but CNMSH insignificantly shortened the time of that. 5. CNMSH and ChAL significantly increased the memory score in the retention test. 6. CNMSH and ChAL significantly attenuated the reduction of CA1 neurons, but insignificantly attenuated the reduction of CA1 thickness. 7. CNMSH and ChAL significantly attenuated the up-regulation of Bax expression in the CA1 of hippocampus. 8. CNMSH and ChAL significantly attenuated the up-regulation of cascapse-3 expression in the CA1 of hippocampus. 9. CNMSH and ChAL significantly attenuated the ${\beta}-amyloid$ accumulation in the CA1 of hippocampus. 10. CNMSH and ChAL significantly attenuated the up-regulation of APP expression in the CA1 of hippocampus. 11. CNMSH and ChAL significantly attenuated the up-regulation of BACE-1 expression in the CA1 of hippocampus. Conclusions : The results show that CNMSH attenuates neuronal apoptosis and ${\beta}-amyloid$ accumulation in the hippocampus and alleviates the impairment of learning and memory produced by chronic cerebral hypoperfusion. These results suggest that CNMSH may be a beneficial medicinal herb to treat cognitive impairment associated with neurodegenerative diseases.

FUN14 Domain-Containing Protein 1 Is Involved in Amyloid Beta Peptide-Induced Mitochondrial Dysfunction and Cell Injury in HT-22 Neuronal Cells (HT-22 신경세포에서 아밀로이드 베타 펩티드에 의한 미토콘드리아와 세포 손상 기전에서 FUN14 도메인 함유 단백 1의 역할)

  • Jae Hoon Kang;Jae Suk Woo
    • Journal of Life Science
    • /
    • v.34 no.1
    • /
    • pp.37-47
    • /
    • 2024
  • FUN14 domain-containing protein 1 (FUNDC1), an outer mitochondrial membrane protein, contributes to removal of damaged mitochondria through mitophagy. In this study, to elucidate the role of the FUNDC1 in the amyloid beta peptide (Aβ)-induced neuropathy, changes in the degree of mitochondrial dysfunction and cell injury caused by Aβ treatment were examined in the HT-22 neuronal cells in which the FUNDC1 expression was transiently silenced or overexpressed. We found that Aβ treatment causes a time-dependent decrease of the FUNDC1 expression. In the Aβ-treated cells, there were a drop in MTT reduction ability, depletion of cellular ATP, disruption of mitochondrial membrane potential, stimulation of cellular ROS production, and increased mitochondrial Ca2+ load. Activation of caspase-3 and induction of apoptotic cell death were also observed. Transient silencing of the FUNDC1 expression by transfection with the FUNDC1 small interfering RNA per se caused mitochondrial dysfunction and apoptotic cell death like the effect of Aβ treatment. Conversely, in cells in which the FUNDC1 was transiently overexpressed by FUNDC1-Myc transfection, overexpression itself had no effect on the mitochondrial functional integrity and cell survival but showed a significant prevention effect against mitochondrial and cell injury caused by Aβ treatment. Overall, these results suggest that the FUNDC1 is importantly involved in the Aβ-induced mitochondrial dysfunction and cell injury in the HT-22 neuronal cells.

Changes in the Neurogenesis and Axonal Sprouting in the Organotypic Hippocampal Slice Culture by Aβ25-35 Treatment

  • Jung, Yeon Joo;Jiang, Hui Ling;Lee, Kyung Eun
    • Applied Microscopy
    • /
    • v.42 no.4
    • /
    • pp.200-206
    • /
    • 2012
  • Induction of neurogenesis can occur in the hippocampus in response to various pathological conditions, such as Alzheimer's disease. The aim of this study was to investigate the changes that occur in endogenous neural stem cells in response to amyloid beta $(A{\beta})_{25-35}$-induced neuronal cell damage in organotypic hippocampal slice cultures. Cresyl violet staining and Fluoro-Jade B staining were used to detect neuronal cell damage and changes of mossy fiber terminals were observed by Timm's staining. The immunofl uorescence staining was used to detect the newly generated cells in the subgranular zone (SGZ) of the dentate gyrus with specific marker, 5-bromo-2'-deoxyuridine (BrdU), Ki-67, Nestin, and doublecortin (DCX). In compared to control slices, neuronal cell damage was observed and the mossy fibers were expanded to CA3 area by treatment with $A{\beta}_{25-35}$. Ki-67/Nestin- and BrdU/DCX-positive cells were detected in the SGZ. In conclusion, these results demonstrate that $A{\beta}$-induced neuronal damage results in an increase in endogenous neural stem cells in rat hippocampal slice cultures not only for gliosis but also for neurogenesis.

Amelioration of Cognitive Dysfunction in APP/PS1 Double Transgenic Mice by Long-Term Treatment of 4-O-Methylhonokiol

  • Jung, Yu-Yeon;Lee, Young-Jung;Choi, Dong-Young;Hong, Jin Tae
    • Biomolecules & Therapeutics
    • /
    • v.22 no.3
    • /
    • pp.232-238
    • /
    • 2014
  • Alzheimer's disease (AD) is the most common neurodegenerative disease without known ways to cure. A key neuropathologic manifestation of the disease is extracellular deposition of beta-amyloid peptide (Ab). Specific mechanisms underlying the development of the disease have not yet been fully understood. In this study, we investigated effects of 4-O-methylhonokiol on memory dysfunction in APP/PS1 double transgenic mice. 4-O-methylhonokiol (1 mg/kg for 3 month) significantly reduced deficit in learning and memory of the transgenic mice, as determined by the Morris water maze test and step-through passive avoidance test. Our biochemical analysis suggested that 4-O-methylhonokiol ameliorated $A{\beta}$ accumulation in the cortex and hippocampus via reduction in beta-site APP-cleaving enzyme 1 expression. In addition, 4-O-methylhonokiol attenuated lipid peroxidation and elevated glutathione peroxidase activity in the double transgenic mice brains. Thus, suppressive effects of 4-O-methylhonokiol on $A{\beta}$ generation and oxidative stress in the brains of transgenic mice may be responsible for the enhancement in cognitive function. These results suggest that the natural compound has potential to intervene memory deficit and progressive neurodegeneration in AD patients.

Effects of Cholinesterase Inhibitors on Neuronal Injuries in Primary Cultured Rat Cortical Cells (배양한 대뇌피질세포에서 유발한 신경손상에 대한 콜린에스테라제 억제제의 영향)

  • 독고향;이광헌;조정숙
    • YAKHAK HOEJI
    • /
    • v.46 no.3
    • /
    • pp.185-191
    • /
    • 2002
  • Alzheimer's disease (AD) involves neuronal degeneration with impaired cholinergic transmission, particularly in areas of the brain associated with learning and memory. Several cholinesterase inhibitors are widely prescribed to ameliorate the cognitive deficits in AD patients. In an attempt to examine if tacrine and donepezil, two well-known cholinesterase inhibitors, exhibit additional pharmacological actions in primary cultured rat cortical cells, we investigated the effects on neuronal injuries induced by glutamate or N-methyl-D-aspartate (NMDA), $\beta$-amyloid fragment ( $A_{{beta}25-35)}$), and various oxidative insults. Both tacrine and donepezil did not significantly inhibit the excitotoxic neuronal damage induced by glutamate. However, tacrine inhibited the toxicity induced by NMDA in a concentration-dependent fashion. In addition, tacrine significantly inhibited the $A_{{beta}25-35)}$-induced neuronal injury at the concentration of 50 $\mu$M. In contrast, donepezil did not reduce the NMDA- nor $A_{{beta}25-35)}$-induced neuronal injury. Tacrine and donepezil had no effects on oxidative neuronal injuries in cultures nor on lipid peroxidation in vitro. These results suggest that, in addition to its anticholinesterase activity, the neuroprotective effects by tacrine against the NMDA- and $A_{{beta}25-35)$-induced toxicity may be beneficial for the treatment of AD. In contrast, the potent and selective inhibition of central acetylcholinesterase appears to be the major action mechanism of donepezil.

Protective Effect of Green Tea Extract on Amyloid $\beta$ peptide-induced Neurotoxicity (아밀로이드베타 펩타이드 유도성 신경세포독성에 대한 녹차 추출물의 보호 효과)

  • Kim, Young-In;Park, Jeong-Yoon;Choi, Soo-Jung;Kim, Jae-Kyeom;Jeong, Chang-Ho;Choi, Sung-Gil;Lee, Seung-Cheol;Cho, Sung-Hwan;Heo, Ho-Jin
    • Food Science and Preservation
    • /
    • v.15 no.5
    • /
    • pp.743-748
    • /
    • 2008
  • Amyloid $\beta$ peptide ($A{\beta}$) is known to increase oxidative stress in nerve cells, leading to apoptosis that is characterized by free radical formation and lipid peroxidation. Neurodegenerative diseases such as Alzheimer's disease (AD) are characterized by large deposits of $A{\beta}$ in the brain. In our study, neuronal protective effects of green tea, along with water activity (0.813), and leaf storage periods (fresh leaf, or leaf stored for up to 4 weeks) were investigated. We measured protective effects against $A{\beta}$-induced cytotoxicity in neuron-like PC12 cells. Powdered green tea was extracted with distilled water at $70^{\circ}C$ for 5 min, and this extract was freeze-dried and stored at $-20^{\circ}C$ until use. In cell viability assays using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), the fresh extract, and that obtained after 1 week of leaf storage, showed the best protective effects against $A{\beta}$-induced neurotoxicity. As oxidative stress causes membrane breakdown, the protective effect of green tea extracts was investigated using lactate dehydrogenase (LDH) and trypan blue exclusion assays. LDH release into the medium was inhibited (by 20-25%) in all tests. In addition, all green tea extracts (fresh, or stored before extraction for up to 4 weeks) showed better cell protective effects ($93.3{\pm}1.8-96.2{\pm}2.4$) than did vitamin C ($91.0{\pm}1.6$), used as a positive control. The results suggest that effectiveness of green tea extracts falls with prolonged leaf storage.

Protective effects of kaempferol, quercetin, and its glycosides on amyloid beta-induced neurotoxicity in C6 glial cell (Kaempferol, quercetin 및 그 배당체의 amyloid beta 유도 신경독성에 대한 C6 신경교세포 보호 효과)

  • Kim, Ji Hyun;Kim, Hyun Young;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.327-332
    • /
    • 2019
  • Alzheimer's disease (AD) is a common neurodegenerative disease. Oxidative stress by amyloid beta peptide (Aβ) of neuronal cell is the most cause of AD. In the present study, protective effects of several flavonoids such as kaempferol (K), kaempferol-3-O-glucoside (KG), quercetin (Q) and quercetin-3-β-ᴅ-glucoside (QG) from Aβ25-35 were investigated using C6 glial cell. Treatment of Aβ25-35 to C6 glial cell showed decrease of cell viability, while treatment of flavonoids such as Q and QG increased cell viability. In addition, treatment of flavonoids declined reactive oxygen species (ROS) production compared with Aβ25-35-induced control. The ROS production was increased by treatment of Aβ25-35 to 133.39%, while KG and QG at concentration of 1 μM decreased ROS production to 107.44 and 113.10%, respectively. To study mechanisms of protective effect of these flavonoids against Aβ25-35, the protein expression related to inflammation under Aβ25-35-induced C6 glial cell was investigated. The results showed that C6 glial cell under Aβ25-35-induced oxidative stress up-regulated inflammation-related protein expressions. However, treatment of flavonoids led to reduction of protein expression such as inducible nitric oxide synthase, cyclooxygenase-2 and interleukin-1β. Especially, treatment of KG and QG decreased more effectively inflammation-related protein expression than its aglycones, K and Q. Therefore, the present results indicated that K, Q and its glycosides attenuated Aβ25-35-induced neuronal oxidative stress and inflammation.

Effects of Posttraumatic Hypothermia in an Animal Model of Traumatic Brain Injury(TBI) - Immunohistochemical Stain by TUNEL & β-APP - (실험적 외상성 뇌손상모델에서 외상 후 저체온법의 효과 - TUNEL과 β-APP Immunohistochemical Stain -)

  • An, Byeong Kil;Ha, Young Soo;Hyun, Dong Keun;Park, Chong Oon;Kim, Joon Mee
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.4
    • /
    • pp.461-470
    • /
    • 2000
  • Objective : Many investigators have demonstrated the protective effects of hypothermia following traumatic brain injury(TBI) in both animals and humans. It has long been recognized that mild to moderate hypothermia improves neurologic outcomes as well as reduces histologic and biochemical sequelae after TBI. In this study, two immunohistochemical staining using terminal deoxynucleotidyl-transferase-mediated biotin dUTP nick end labeling(TUNEL), staining of apoptosis, and ${\beta}$-amyloid precursor protein(${\beta}$-APP), a marker of axonal injury, were done and the authors evaluated the protective effects of hypothermia on axonal and neuronal injury after TBI in rats. Material and Method : The animals were prepared for the delivery of impact-acceleration brain injury as described by Marmarou and colleagues. TBI is achieved by allowing of a weight drop of 450gm, 1 m height to fall onto a metallic disc fixed on the intact skull of the rats. Fourty Sprague-Dawley rats weighing 400 to 450g were subjected to experimental TBI induced by an impact-acceleration device. Twenty rats were subjected to hypothermia after injury, with their rectal temperatures maintained at $32^{\circ}C$ for 1 hour. After this 1-hour period of hypothermia, rewarming to normothermic levels was accomplished over 30-minute period. Following 12 hours, 24 hours, 1 week and 2 weeks later the animals were killed and semiserial sagittal sections of the brain were reacted for visualization of the apoptosis and ${\beta}$-APP. Results : The density of ${\beta}$-APP marked damaged axons within the corticospinal tract at the pontomedullary junction and apoptotic cells at the contused cerebral cortex were calculated for each animal. In comparison with the untreated controls, a significant reduction in ${\beta}$-APP marked damaged axonal density and apoptotic cells were found in all hypothermic animals(p<0.05). Conclusion : This study shows that the posttraumatic hypothermia result in substantial protection in TBI, at least in terms of the injured axons and neurons.

  • PDF

Cell-Based Screen Using Amyloid Mimic β23 Expression Identifies Peucedanocoumarin III as a Novel Inhibitor of α-Synuclein and Huntingtin Aggregates

  • Ham, Sangwoo;Kim, Hyojung;Hwang, Seojin;Kang, Hyunook;Yun, Seung Pil;Kim, Sangjune;Kim, Donghoon;Kwon, Hyun Sook;Lee, Yun-Song;Cho, MyoungLae;Shin, Heung-Mook;Choi, Heejung;Chung, Ka Young;Ko, Han Seok;Lee, Gum Hwa;Lee, Yunjong
    • Molecules and Cells
    • /
    • v.42 no.6
    • /
    • pp.480-494
    • /
    • 2019
  • Aggregates of disease-causing proteins dysregulate cellular functions, thereby causing neuronal cell loss in diverse neurodegenerative diseases. Although many in vitro or in vivo studies of protein aggregate inhibitors have been performed, a therapeutic strategy to control aggregate toxicity has not been earnestly pursued, partly due to the limitations of available aggregate models. In this study, we established a tetracycline (Tet)-inducible nuclear aggregate (${\beta}23$) expression model to screen potential lead compounds inhibiting ${\beta}23$-induced toxicity. High-throughput screening identified several natural compounds as nuclear ${\beta}23$ inhibitors, including peucedanocoumarin III (PCIII). Interestingly, PCIII accelerates disaggregation and proteasomal clearance of both nuclear and cytosolic ${\beta}23$ aggregates and protects SH-SY5Y cells from toxicity induced by ${\beta}23$ expression. Of translational relevance, PCIII disassembled fibrils and enhanced clearance of cytosolic and nuclear protein aggregates in cellular models of huntingtin and ${\alpha}$-synuclein aggregation. Moreover, cellular toxicity was diminished with PCIII treatment for polyglutamine (PolyQ)-huntingtin expression and ${\alpha}$-synuclein expression in conjunction with 6-hydroxydopamine (6-OHDA) treatment. Importantly, PCIII not only inhibited ${\alpha}$-synuclein aggregation but also disaggregated preformed ${\alpha}$-synuclein fibrils in vitro. Taken together, our results suggest that a Tet-Off ${\beta}23$ cell model could serve as a robust platform for screening effective lead compounds inhibiting nuclear or cytosolic protein aggregates. Brain-permeable PCIII or its derivatives could be beneficial for eliminating established protein aggregates.