대화형 에이전트가 일관성 없는 답변, 재미 없는 답변을 하는 문제를 해결하기 위하여 최근 페르소나 기반의 대화 분야의 연구가 활발히 진행되고 있다. 그러나 한국어로 구축된 페르소나 대화 데이터는 아직 구축되지 않은 상황이다. 이에 본 연구에서는 영어 원본 데이터에서 한국어로 번역된 데이터를 활용하여 최초의 페르소나 기반 한국어 대화 모델을 제안한다. 전처리를 통하여 번역 품질을 향상시킨 데이터에 사전 학습 된 한국어 모델인 KoBERT와 KoELECTRA를 미세조정(fine-tuning) 시킴으로써 모델에게 주어진 페르소나와 대화 맥락을 고려하여 올바른 답변을 선택하는 모델을 학습한다. 실험 결과 KoELECTRA-base 모델이 가장 높은 성능을 보이는 것을 확인하였으며, 단순하게 사용자의 발화만을 주는 것 보다 이전 대화 이력이 추가적으로 주어졌을 때 더 좋은 성능을 보이는 것을 확인할 수 있었다.
표 질의응답은 반-정형화된 표 데이터에서 질문에 대한 답을 찾는 문제이다. 본 연구에서는 한국어 표 질의응답을 위한 표 데이터에 적합한 TAPAS를 이용한 언어모델 사전학습 방법과 표에서 정답이 있는 셀을 예측하고 선택된 셀에서 정확한 정답의 경계를 예측하기 위한 표 질의응답 모형을 제안한다. 표 사전학습을 위해서 약 10만 개의 표 데이터를 활용했으며, 텍스트 데이터에 사전학습된 BERT 모델을 이용하여 TAPAS를 사전학습한 모델이 가장 좋은 성능을 보였다. 기계독해 모델을 적용했을 때 EM 46.8%, F1 63.8%로 텍스트 텍스트에 사전학습된 모델로 파인튜닝한 것과 비교하여 EM 6.7%, F1 12.9% 향상된 것을 보였다. 표 질의응답 모델의 경우 TAPAS를 통해 생성된 임베딩을 이용하여 행과 열의 임베딩을 추출하고 TAPAS 임베딩, 행과 열의 임베딩을 결합하여 기계독해 모델을 적용했을 때 EM 63.6%, F1 76.0%의 성능을 보였다.
많은 대학교에서 다양한 교과 및 비교과 활동을 통해 학생들의 취업 역량을 향상하기 위해 노력하고 있지만, 취업을 준비하는 학생마다 목표와 하고자 하는 활동이 다르다. 따라서 기존에 획일적이고 종합적으로 제공하고 있는 프로그램이 실제로 학생들에게 적합한지 여부를 판단하기 어려우므로 개인화 추천 시스템의 도입이 필요하다. 본 연구에서는 충북대학교의 모든 학생에게 일괄적으로 제안되고 있는 비교과 프로그램을 학년 및 학과별로 분류하여 제시하는 방법을 제안하였다. 또한, 비교과 프로그램에 참여한 학생의 평점 데이터를 사용하여 협업 필터링 모델 3가지를 구현하고, 성능을 비교해 가장 정확도가 높은 모델로 개인화된 맞춤형 추천을 제안한다.
Git의 커밋 메시지는 프로젝트가 진행되면서 발생하는 각종 이슈 및 코드의 변경이력을 저장하고 관리하고 있기 때문에 소프트웨어 유지관리와 프로젝트의 생명주기와 밀접한 연관성을 갖고 있다. 이러한 Git의 커밋 메시지에 대한 정확한 분석 결과는 소프트웨어 개발 및 유지관리 활동 시, 시간과 비용의 효율적인 관리에 많은 영향을 끼치고 있다. 이에 대한 기존 연구로 Git에서 발생하는 커밋 메시지를 소프트웨어 유지관리의 세 가지 형태로 분류하고 매핑하여 정확한 분석을 시도하려는 연구가 진행되었으나, 최대 87%의 정확도를 제시한 연구 결과가 있었다. 이러한 연구들은 정확도가 낮아 실제 프로젝트의 개발 및 유지관리에 적용하기에는 위험성과 어려움이 있는 현실이다. 본 논문에서는 커밋 메시지 분류에 대한 선행 연구 조사를 통해 각 연구들의 프로세스와 특징을 추출하였고, 이를 이용한 분류 정확도를 높일 수 있는 커밋 복합 분류 모델에 대해 제안한다.
본 논문은 대규모 텍스트 데이터에서 이슈를 발굴할 때 사용되는 기존의 정보 네트워크 또는 지식 그래프 구축 방법의 한계점을 지적하고, 문장 단위로 정보 네트워크를 구축하는 새로운 방법에 대해서 제안한다. 먼저 문장을 구성하는 단어와 캐릭터수의 분포를 측정하며 의성어와 같은 노이즈를 제거하기 위한 역치값을 설정하였다. 다음으로 BERT 기반 언어모델을 이용하여 모든 문장을 벡터화하고, 코사인 유사도를 이용하여 두 문장벡터에 대한 유사성을 측정하였다. 오분류된 유사도 결과를 최소화하기 위하여 명사형 단어의 의미적 연관성을 비교하는 알고리즘을 개발하였다. 제안된 유사문장 비교 알고리즘의 결과를 검토해 보면, 두 문장은 서술되는 형태가 다르지만 동일한 주제와 내용을 다루고 있는 것을 확인할 수 있었다. 본 논문에서 제안하는 방법은 단어 단위 지식 그래프 해석의 어려움을 극복할 수 있는 새로운 방법이다. 향후 이슈 및 트랜드 분석과 같은 미래연구 분야에 적용하면, 데이터 기반으로 특정 주제에 대한 사회적 관심을 수렴하고, 수요를 반영한 정책적 제언을 도출하는데 기여할 수 있을 것이다
This study analyzed users' emotional responses to VI character design through YouTube comments. The researchers applied text-mining to analyze 116,375 comments, focusing on terms related to character design and characteristics of VI. Using the BERT model in sentiment analysis, we classified comments into extremely negative, negative, neutral, positive, or extremely positive sentiments. Next, we conducted a co-occurrence frequency analysis on comments with extremely negative and extremely positive responses to examine the semantic relationships between character design and emotional characteristic terms. We also performed a content analysis of comments about Miquela and Shudu to analyze the perception differences regarding the two character designs. The results indicate that form elements (e.g., voice, face, and skin) and behavioral elements (e.g., speaking, interviewing, and reacting) are vital in eliciting users' emotional responses. Notably, in the negative responses, users focused on the humanization aspect of voice and the authenticity aspect of behavior in speaking, interviewing, and reacting. Furthermore, we found differences in the character design elements and characteristics that users expect based on the VI's field of activity. As a result, this study suggests applications to character design to accommodate these variations.
스마트폰과 태블릿과 같은 스마트 기기의 발달과 사용이 증가함에 따라, 모바일 기기를 기반으로 한 모바일 어플리케이션 시장이 급속도로 커지고 있다. 모바일 어플리케이션 사용자는 어플리케이션을 사용 경험을 공유하고자 리뷰를 남기는데, 이를 분석하면 소비자들의 다양한 니즈를 파악할 수 있고 어플리케이션 개발자들은 소비자들이 작성한 리뷰를 통해 애플리케이션의 개선을 위한 유용한 피드백을 받을 수 있다. 그러나 소비자들의 남기는 많은 양의 리뷰를 수작업으로 분석하기 위해서는 많은 시간과 비용을 지불해야하기 때문에 이를 최소화 할 방안을 마련할 필요성이 존재한다. 이에 본 연구에서는 구글 플레이스토어(Google PlayStore)의 배달 어플리케이션 사용자 리뷰를 수집한 후 머신러닝과 딥러닝 기법을 활용하여 어플리케이션 기능 장점, 단점, 기능 개선 요청, 버그 보고의 4가지 범주로 분류하는 방법을 제안한다. 연구 결과, Hugging Face의 pretrain된 BERT기반 Transformer모델의 성능의 경우 위의 4개의 범주에 대한 f1 score값은 차례대로 0.93, 0.51, 0.76, 0.83으로 LSTM, GRU보다 뛰어난 성능을 보인 것을 확인할 수 있었다.
본 연구에서는 감정을 표현하기 위한 표정 연습을 보조하는 인공지능을 개발하였다. 개발한 인공지능은 서술형 문장과 표정 이미지로 구성된 멀티모달 입력을 심층신경망에 사용하고 서술형 문장에서 예측되는 감정과 표정 이미지에서 예측되는 감정 사이의 유사도를 계산하여 출력하였다. 사용자는 서술형 문장으로 주어진 상황에 맞게 표정을 연습하고 인공지능은 서술형 문장과 사용자의 표정 사이의 유사도를 수치로 출력하여 피드백한다. 표정 이미지에서 감정을 예측하기 위해 ResNet34 구조를 사용하였으며 FER2013 공공데이터를 이용해 훈련하였다. 자연어인 서술형 문장에서 감정을 예측하기 위해 KoBERT 모델을 전이학습 하였으며 AIHub의 감정 분류를 위한 대화 음성 데이터 세트를 사용해 훈련하였다. 표정 이미지에서 감정을 예측하는 심층신경망은 65% 정확도를 달성하여 사람 수준의 감정 분류 능력을 보여주었다. 서술형 문장에서 감정을 예측하는 심층신경망은 90% 정확도를 달성하였다. 감정표현에 문제가 없는 일반인이 개발한 인공지능을 이용해 표정 연습 실험을 수행하여 개발한 인공지능의 성능을 검증하였다.
최근 다언어모델(Cross-lingual language model)을 활용하여 한 번도 보지 못한 특정 언어의 하위 태스크를 수행하는 제로샷 교차언어 전이(Zero-shot cross-lingual transfer)에 대한 관심이 증가하고 있다. 본 논문은 기계번역 품질 예측(Quality Estimation, QE)을 학습하기 위한 데이터 구축적 측면에서의 한계점을 지적하고, 데이터를 구축하기 어려운 상황에서도 QE를 수행할 수 있도록 제로샷 교차언어 전이를 수행한다. QE에서 제로샷을 다룬 연구는 드물며, 본 논문에서는 교차언어모델을 활용하여 영어-독일어 QE 데이터에 대해 미세조정을 실시한 후 다른 언어쌍으로의 제로샷 전이를 진행했고 이 과정에서 다양한 다언어모델을 활용하여 비교 연구를 수행했다. 또한 다양한 자원 크기로 구성된 언어쌍에 대해 제로샷 실험을 진행하고 실험 결과에 대해 언어별 언어학적 특성 관점으로의 분석을 수행하였다. 실험결과 multilingual BART와 multillingual BERT에서 가장 높은 성능을 보였으며, 특정 언어쌍에 대해 QE 학습을 전혀 진행하지 않은 상황에서도 QE를 수행할 수 있도록 유도하였다.
오픈 도메인 기계독해는 질문과 연관된 단락이 존재하지 않아 단락을 검색하는 검색 기능을 추가한 모델이다. 문서 검색은 단어 빈도 기반인 TF-IDF로 많은 연구가 진행됐으나 문서의 양이 많아지면 낮은 성능을 보이는 문제가 있다. 아울러 단락 선별은 단어 기반 임베딩으로 많은 연구가 진행됐으나 문장의 특징을 가지는 단락의 문맥을 정확히 추출하지 못하는 문제가 있다. 그리고 문서 독해는 BERT로 많은 연구가 진행됐으나 방대한 파라미터로 느린 학습 문제를 보였다. 본 논문에서는 언급한 3가지 문제를 해결하기 위해 문서의 길이까지 고려한 BM25를 이용하며 문장 문맥을 얻기 위해 InferSent를 사용하고, 파라미터 수를 줄이기 위해 ALBERT를 이용한 오픈 도메인 기계독해를 제안한다. SQuAD1.1 데이터셋으로 실험을 진행했다. 문서 검색은 BM25의 성능이 TF-IDF보다 3.2% 높았다. 단락 선별은 InferSent가 Transformer보다 0.9% 높았다. 마지막으로 문서 독해에서 단락의 수가 증가하면 ALBERT가 EM에서 0.4%, F1에서 0.2% 더 높았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.