• 제목/요약/키워드: Bernoulli principle

검색결과 115건 처리시간 0.024초

Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams

  • Abdelhak Mesbah;Zakaria Belabed;Khaled Amara;Abdelouahed Tounsi;Abdelmoumen A. Bousahla;Fouad Bourada
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.291-309
    • /
    • 2023
  • This paper addresses the finite element modeling of functionally graded porous (FGP) beams for free vibration and buckling behaviour cases. The formulated finite element is based on simple and efficient higher order shear deformation theory. The key feature of this formulation is that it deals with Euler-Bernoulli beam theory with only three unknowns without requiring any shear correction factor. In fact, the presented two-noded beam element has three degrees of freedom per node, and the discrete model guarantees the interelement continuity by using both C0 and C1 continuities for the displacement field and its first derivative shape functions, respectively. The weak form of the governing equations is obtained from the Hamilton principle of FGP beams to generate the elementary stiffness, geometric, and mass matrices. By deploying the isoparametric coordinate system, the derived elementary matrices are computed using the Gauss quadrature rule. To overcome the shear-locking phenomenon, the reduced integration technique is used for the shear strain energy. Furthermore, the effect of porosity distribution patterns on the free vibration and buckling behaviours of porous functionally graded beams in various parameters is investigated. The obtained results extend and improve those predicted previously by alternative existing theories, in which significant parameters such as material distribution, geometrical configuration, boundary conditions, and porosity distributions are considered and discussed in detailed numerical comparisons. Determining the impacts of these parameters on natural frequencies and critical buckling loads play an essential role in the manufacturing process of such materials and their related mechanical modeling in aerospace, nuclear, civil, and other structures.

Investigation of the mechanical behavior of functionally graded sandwich thick beams

  • Mouaici, Fethi;Bouadi, Abed;Bendaida, Mohamed;Draiche, Kada;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed;Ghazwani, Mofareh Hassan;Alnujaie, Ali
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.721-740
    • /
    • 2022
  • In this paper, an accurate kinematic model has been developed to study the mechanical response of functionally graded (FG) sandwich beams, mainly covering the bending, buckling and free vibration problems. The studied structure with homogeneous hardcore and softcore is considered to be simply supported in the edges. The present model uses a new refined shear deformation beam theory (RSDBT) in which the displacement field is improved over the other existing high-order shear deformation beam theories (HSDBTs). The present model provides good accuracy and considers a nonlinear transverse shear deformation shape function, since it is constructed with only two unknown variables as the Euler-Bernoulli beam theory but complies with the shear stress-free boundary conditions on the upper and lower surfaces of the beam without employing shear correction factors. The sandwich beams are composed of two FG skins and a homogeneous core wherein the material properties of the skins are assumed to vary gradually and continuously in the thickness direction according to the power-law distribution of volume fraction of the constituents. The governing equations are drawn by implementing Hamilton's principle and solved by means of the Navier's technique. Numerical computations in the non-dimensional terms of transverse displacement, stresses, critical buckling load and natural frequencies obtained by using the proposed model are compared with those predicted by other beam theories to confirm the performance of the proposed theory and to verify the accuracy of the kinematic model.

Investigation of nonlinear vibration behavior of the stepped nanobeam

  • Mustafa Oguz Nalbant;Suleyman Murat Bagdatli;Ayla Tekin
    • Advances in nano research
    • /
    • 제15권3호
    • /
    • pp.215-224
    • /
    • 2023
  • Nonlinearity plays an important role in control systems and the application of design. For this reason, in addition to linear vibrations, nonlinear vibrations of the stepped nanobeam are also discussed in this manuscript. This study investigated the vibrations of stepped nanobeams according to Eringen's nonlocal elasticity theory. Eringen's nonlocal elasticity theory was used to capture the nanoscale effect. The nanoscale stepped Euler Bernoulli beam is considered. The equations of motion representing the motion of the beam are found by Hamilton's principle. The equations were subjected to nondimensionalization to make them independent of the dimensions and physical structure of the material. The equations of motion were found using the multi-time scale method, which is one of the approximate solution methods, perturbation methods. The first section of the series obtained from the perturbation solution represents a linear problem. The linear problem's natural frequencies are found for the simple-simple boundary condition. The second-order part of the perturbation solution is the nonlinear terms and is used as corrections to the linear problem. The system's amplitude and phase modulation equations are found in the results part of the problem. Nonlinear frequency-amplitude, and external frequency-amplitude relationships are discussed. The location of the step, the radius ratios of the steps, and the changes of the small-scale parameter of the theory were investigated and their effects on nonlinear vibrations under simple-simple boundary conditions were observed by making comparisons. The results are presented via tables and graphs. The current beam model can assist in designing and fabricating integrated such as nano-sensors and nano-actuators.

Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories

  • Shaopeng Song;Tao Zhang;Zhiewn Zhui
    • Steel and Composite Structures
    • /
    • 제49권5호
    • /
    • pp.487-502
    • /
    • 2023
  • In the realm of nanotechnology, the nonlocal strain gradient theory takes center stage as it scrutinizes the behavior of spinning cantilever nanobeams and nanotubes, pivotal components supporting various mechanical movements in sport structures. The dynamics of these structures have sparked debates within the scientific community, with some contending that nonlocal cantilever models fail to predict dynamic softening, while others propose that they can indeed exhibit stiffness softening characteristics. To address these disparities, this paper investigates the dynamic response of a nonlocal cantilever cylindrical beam under the influence of external discontinuous dynamic loads. The study employs four distinct models: the Euler-Bernoulli beam model, Timoshenko beam model, higher-order beam model, and a novel higher-order tube model. These models account for the effects of functionally graded materials (FGMs) in the radial tube direction, giving rise to nanotubes with varying properties. The Hamilton principle is employed to formulate the governing differential equations and precise boundary conditions. These equations are subsequently solved using the generalized differential quadrature element technique (GDQEM). This research not only advances our understanding of the dynamic behavior of nanotubes but also reveals the intriguing phenomena of both hardening and softening in the nonlocal parameter within cantilever nanostructures. Moreover, the findings hold promise for practical applications, including drug delivery, where the controlled vibrations of nanotubes can enhance the precision and efficiency of medication transport within the human body. By exploring the multifaceted characteristics of nanotubes, this study not only contributes to the design and manufacturing of rotating nanostructures but also offers insights into their potential role in revolutionizing drug delivery systems.

확률의 상관 빈도이론과 포퍼

  • 송하석
    • 논리연구
    • /
    • 제8권1호
    • /
    • pp.23-46
    • /
    • 2005
  • 이 글의 목적은 포퍼의 초기의 확률론, 즉 $\ll$탐구의 논리$\gg$에서 제시된 상관 빈도 이론에 대해서 살펴보고 평가하는 것이다. 이를 위해서 우선 빈도 이론을 가장 체계적으로 제시한 폰 미제스의 빈도 이론에 대 해서 자세하게 논의한다. 빈도 이론에 대한 일반적인 비판은 유한한 경험적 집산이 어떻게 무한 계열인 수학적 집산으로 표상되는가와 무작위성의 공리가 어떻게 수학적으로 정식화하는가의 문제이다. 폰 미제스는 이러한 비판에 답하면서 빈도이론을 발전시켜나간다. 그러나 그의 빈도 이론에는 무작위성의 공리와 수렴성의 공리가 양립가능하지 많은 것처럼 보인다는 문제가 있다. 객관주의 확률론의 옹호자로서 포퍼는 이와 같은 문제가 해 결된 빈도 이론을 제시하고자 했다. 포퍼는 대담하게 수렴성의 공리를 완전히 포기하고 무작위성의 공리를 개선함으로써 이 문제를 해결할 수 있다고 주장한다. 그는 서수선택과 이웃선택이라는 위치선택 개념을 통해서 무 작위성의 공리를 보다 약화된 조건으로 수정하고 그 공리로부터 베르누이의 정리를 연역해 냄으로써 수렴성의 공리가 불필요함을 보인다. 결국 포퍼는 폰 미제스의 빈도이론의 치명적인 문제라고 여겨졌던 두 공리 사이의 비일관성 문제를 해결했다고 할 수 있다. 그럼에도 불구하고 포퍼의 수정된 빈도이론은 빈도이론의 기초가 된다고 생각되는 수렴성의 공리를 포기하는 반직관적인 이론이라는 비판을 피할 길이 없어 보이고, 그런 이유 때문에 포퍼의 빈도이론은 별로 주목을 받지 못한 것이다. 보다 직관적으로 설득력 있는 빈도 이론은 무작위성의 공리를 수렴성 공리와 일관성을 갖도록 정식화하여 제시하는 이론이다.

  • PDF