• Title/Summary/Keyword: Bernoulli polynomials and numbers

Search Result 67, Processing Time 0.017 seconds

TWO VARIABLE HIGHER-ORDER FUBINI POLYNOMIALS

  • Kim, Dae San;Kim, Taekyun;Kwon, Hyuck-In;Park, Jin-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.975-986
    • /
    • 2018
  • Some new family of Fubini type numbers and polynomials associated with Apostol-Bernoulli numbers and polynomilas were introduced recently by Kilar and Simsek ([5]) and we study the two variable Fubini polynomials as Appell polynomials whose coefficients are the Fubini polynomials. In this paper, we would like to utilize umbral calculus in order to study two variable higher-order Fubini polynomials. We derive some of their properties, explicit expressions and recurrence relations. In addition, we express the two variable higher-order Fubini polynomials in terms of some families of special polynomials and vice versa.

ANALYTIC PROPERTIES OF THE q-VOLKENBORN INTEGRAL ON THE RING OF p-ADIC INTEGERS

  • Kim, Min-Soo;Son, Jin-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.1-12
    • /
    • 2007
  • In this paper, we consider the q-Volkenborn integral of uniformly differentiable functions on the p-adic integer ring. By using this integral, we obtain the generating functions of twisted q-generalized Bernoulli numbers and polynomials. We find some properties of these numbers and polynomials.

LEONHARD EULER (1707-1783) AND THE COMPUTATIONAL ASPECTS OF SOME ZETA-FUNCTION SERIES

  • Srivastava, Hari Mohan
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.5
    • /
    • pp.1163-1184
    • /
    • 2007
  • In this presentation dedicated to the tricentennial birth anniversary of the great eighteenth-century Swiss mathematician, Leonhard Euler (1707-1783), we begin by remarking about the so-called Basler problem of evaluating the Zeta function ${\zeta}(s)$ [in the much later notation of Georg Friedrich Bernhard Riemann (1826-1866)] when s=2, which was then of vital importance to Euler and to many other contemporary mathematicians including especially the Bernoulli brothers [Jakob Bernoulli (1654-1705) and Johann Bernoulli (1667-1748)], and for which a fascinatingly large number of seemingly independent solutions have appeared in the mathematical literature ever since Euler first solved this problem in the year 1736. We then investigate various recent developments on the evaluations and representations of ${\zeta}(s)$ when $s{\in}{\mathbb{N}}{\backslash}\;[1],\;{\mathbb{N}}$ being the set of natural numbers. We emphasize upon several interesting classes of rapidly convergent series representations for ${\zeta}(2n+1)(n{\in}{\mathbb{N}})$ which have been developed in recent years. In two of many computationally useful special cases considered here, it is observed that ${\zeta}(3)$ can be represented by means of series which converge much more rapidly than that in Euler's celebrated formula as well as the series used recently by Roger $Ap\'{e}ry$ (1916-1994) in his proof of the irrationality of ${\zeta}(3)$. Symbolic and numerical computations using Mathematica (Version 4.0) for Linux show, among other things, that only 50 terms of one of these series are capable of producing an accuracy of seven decimal places.

ON p-ADIC q-BERNOULLl NUMBERS

  • Kim, Tae-Kyun
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.21-30
    • /
    • 2000
  • We give a proof of the distribution relation for q-Bernoulli polynomials $B_{k}$(x : q) by using q-integral and evaluate the values of p-adic q-L-function.n.

  • PDF

On the Historical investigation of Sums of Power of Consecutive Integer (연속된 정수의 멱의 합의 변천사에 대한 고찰)

  • Kang Dong-Jin;Kim Dae-Yeoul;Park Dal-Won;Seo Jong-Jin;Rim Seog-Hoo;Jang Lee-Chae
    • Journal for History of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.1-16
    • /
    • 2006
  • In 1713, J. Bernoulli first discovered the method which one can produce those formulae for the sum $\sum\limits_{\iota=1}^{n}\;\iota^k$ for any natural numbers k ([5],[6]). In this paper, we investigate for the historical background and motivation of the sums of powers of consecutive integers due to J. Bernoulli. Finally, we introduce and discuss for the subjects which are studying related to these areas in the recent.

  • PDF

SEVERAL RESULTS ASSOCIATED WITH THE RIEMANN ZETA FUNCTION

  • Choi, Junesang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.467-480
    • /
    • 2009
  • In 1859, Bernhard Riemann, in his epoch-making memoir, extended the Euler zeta function $\zeta$(s) (s > 1; $s{\in}\mathbb{R}$) to the Riemann zeta function $\zeta$(s) ($\Re$(s) > 1; $s{\in}\mathbb{C}$) to investigate the pattern of the primes. Sine the time of Euler and then Riemann, the Riemann zeta function $\zeta$(s) has involved and appeared in a variety of mathematical research subjects as well as the function itself has been being broadly and deeply researched. Among those things, we choose to make a further investigation of the following subjects: Evaluation of $\zeta$(2k) ($k {\in}\mathbb{N}$); Approximate functional equations for $\zeta$(s); Series involving the Riemann zeta function.

  • PDF

NOTES ON SOME IDENTITIES INVOLVING THE RIEMANN ZETA FUNCTION

  • Lee, Hye-Rim;Ok, Bo-Myoung;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.165-173
    • /
    • 2002
  • We first review Ramaswami's find Apostol's identities involving the Zeta function in a rather detailed manner. We then present corrected, or generalized formulas, or a different method of proof for some of them. We also give closed-form evaluation of some series involving the Riemann Zeta function by an integral representation of ζ(s) and Apostol's identities given here.