• 제목/요약/키워드: Bernese GNSS software

검색결과 5건 처리시간 0.018초

Precise Orbit Determination of GPS using Bernese GPS Software

  • Baek, Jeong-Ho;Cho, Sung-Ki;Jo, Jung-Hyun;Park, Jong-Uk
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.267-270
    • /
    • 2006
  • The International GNSS Service (IGS) has managed the global GNSS network and provided the highest quality GNSS data and products, which are GPS ephemerides, clock information and Earth orientation parameter, as the standard for GNSS. An important part of its works is to provide the precise orbits of GPS satellites. GPS satellites send their orbit information (broadcast ephemerides) to users and their accuracies are approximately 1.6 meters level, but those accuracies are not sufficient for the high precise applications which require millimeters precision. The current accuracies of the IGS final orbits are within 5 centimeters level and they are used for Earth science, meteorology, space science, and they are made by the IGS analysis centers and combined by the IGS analysis center coordinator. The techniques making the products are very difficult and require the high technology. The Korea Astronomy and Space Science Institute (KASI) studies to make the IGS products. In this study, we developed our own processing strategy and made GPS ephemerides using Bernese GPS software Ver. 5.0. We used the broadcast ephemerides as the initial orbits and processed the globally distributed 150 IGS stations. The result shows about 6 to 8 centimeters in root-mean-squares related to IGS final orbits in each day during a week. We expect that this study can contribute to secure our own high technology.

  • PDF

GNSS를 이용한 동일본대지진 이후 한반도 지각변동 해석 연구 (A Study on the Analysis of Crust Deformation on the Korean Peninsula after the Tohoku Earthquake using GNSS Observation)

  • 김희언;황의홍;이하성;이덕기
    • 한국측량학회지
    • /
    • 제38권6호
    • /
    • pp.689-696
    • /
    • 2020
  • 한반도 지각은 남동쪽으로 연평균 3cm의 속도로 이동하고 있다고 선행연구를 통해 알려져 있다. 2011년 동일본대지진에 의해 한반도 지각에는 큰 변동이 발생했다. 이후 한반도에서는 지진의 발생빈도가 증가하였다. 따라서 최근 15년간의 국내 및 국외 GNSS (Global Navigation Satellite System) 관측자료를 이용하여 동일본대지진 발생시점을 기준으로 한반도 지각변동 추세를 분석하였다. 자료처리는 전 세계적으로 많이 사용되고 있는 과학 기술용 소프트웨어 Bernese Software V5.2를 활용하였다. 그 결과 한반도는 동일본대지진 발생 전보다 이동 크기는 약 4mm, 이동 방향은 약 10° 차이가 발생했다. 한반도 내부 지각의 왜곡 현상은 동일본대지진 당시 한반도 지각의 동서 팽창 현상이 관측되었는데 최근까지 동일본대지진 이전의 수준으로 완전히 복귀하지 않은 것으로 판단된다.

VLBI TRF Combination Using GNSS Software

  • Kwak, Younghee;Cho, Jungho
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권4호
    • /
    • pp.315-320
    • /
    • 2013
  • Space geodetic techniques can be used to obtain precise shape and rotation information of the Earth. To achieve this, the representative combination solution of each space geodetic technique has to be produced, and then those solutions need to be combined. In this study, the representative combination solution of very long baseline interferometry (VLBI), which is one of the space geodetic techniques, was produced, and the variations in the position coordinate of each station during 7 years were analyzed. Products from five analysis centers of the International VLBI Service for Geodesy and Astrometry (IVS) were used as the input data, and Bernese 5.0, which is the global navigation satellite system (GNSS) data processing software, was used. The analysis of the coordinate time series for the 43 VLBI stations indicated that the latitude component error was about 15.6 mm, the longitude component error was about 37.7 mm, and the height component error was about 30.9 mm, with respect to the reference frame, International Terrestrial Reference Frame 2008 (ITRF2008). The velocity vector of the 42 stations excluding the YEBES station showed a magnitude difference of 7.3 mm/yr (30.2%) and a direction difference of $13.8^{\circ}$ (3.8%), with respect to ITRF2008. Among these, the 10 stations in Europe showed a magnitude difference of 7.8 mm/yr (30.3%) and a direction difference of $3.7^{\circ}$ (1.0%), while the 14 stations in North America showed a magnitude difference of 2.7 mm/yr (15.8%) and a direction difference of $10.3^{\circ}$ (2.9%).

Performance Analysis of Mapping Functions and Mean Temperature Equations for GNSS Precipitable Water Vapor in the Korean Peninsula

  • Park, Han-Earl;Yoo, Sung-Moon;Yoon, Ha Su;Chung, Jong-Kyun;Cho, Jungho
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제5권2호
    • /
    • pp.75-85
    • /
    • 2016
  • The performance of up-to-date mapping functions and various mean temperature equations were analyzed to derive optimal mapping function and mean temperature equation when GNSS precipitable water vapor (PWV) was investigated in the Korean Peninsula. Bernese GNSS Software 5.2, which can perform high precision GNSS data processing, was used for accurate analysis, and zenith total delay (ZTD) required to calculate PWV was estimated via the Precise Point Positioning (PPP) method. GNSS, radiosonde, and meteorological data from 2009 to 2014 were acquired from Sokcho Observatory and used. ZTDs estimated by applying the global mapping function (GMF) and Vienna mapping function 1 (VMF1) were compared with each other in order to evaluate the performance of the mapping functions. To assess the performance of mean temperature equations, GNSS PWV was calculated by using six mean temperature equations and a difference with radiosonde PWV was investigated. Conclusively, accuracy of data processing was improved more when using VMF1 than using GMF. A mean temperature equation proposed by Wu (2003) had the smallest difference with that in the radiosonde in the analysis including all seasons. In summer, a mean temperature equation proposed by Song & Grejner-Brzezinska (2009) had the closest results with that of radiosonde. In winter, a mean temperature equation proposed by Song (2009) showed the closest results with that of radiosonde.

Quality Assessment of Tropospheric Delay Estimated by Precise Point Positioning in the Korean Peninsula

  • Park, Han-Earl;Roh, Kyoung Min;Yoo, Sung-Moon;Choi, Byung-Kyu;Chung, Jong-Kyun;Cho, Jungho
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제3권4호
    • /
    • pp.131-141
    • /
    • 2014
  • Over the last decade, the Global Navigation Satellite System (GNSS) has been increasingly utilized as a meteorological research tool. The Korea Astronomy and Space Science Institute (KASI) has also been developing a near real-time GNSS precipitable water vapor (PWV) information management system that can produce a precise PWV for the Korean Peninsula region using GNSS data processing and meteorological measurements. The goal of this paper is to evaluate whether the precise point positioning (PPP) strategy will be used as the new data processing strategy of the GNSS-PWV information management system. For this purpose, quality assessment has been performed by means of a comparative analysis of the troposphere zenith total delay (ZTD) estimates from KASI PPP solutions (KPS), KASI network solutions (KNS), and International GNSS Service (IGS) final troposphere products (IFTP) for ten permanent GNSS stations in the Korean Peninsula. The assessment consists largely of two steps: First, the troposphere ZTD of the KNS are compared to those of the IFTP for only DAEJ and SUWN, in which the IFTP are used as the reference. Second, the KPS are compared to the KNS for all ten GNSS stations. In this step, the KNS are used as a new reference rather than the IFTP, because it was proved in the previous step that the KNS can be a suitable reference. As a result, it was found that the ZTD values from both the KPS and the KNS followed the same overall pattern, with an RMS of 5.36 mm. When the average RMS was converted into an error of GNSS-PWV by considering the typical ratio of zenith wet delay and PWV, the GNSS-PWV error met the requirement for PWV accuracy in this application. Therefore, the PPP strategy can be used as a new data processing strategy in the near real-time GNSS-PWV information management system.