• Title/Summary/Keyword: Benzyl-Alcohol

Search Result 156, Processing Time 0.025 seconds

Effects of Benzyl Alcohol on Structures and Calcium Transport Function of Biological Cell Membranes (Benzyl Alcohol이 세포막의 형태 및 Calcium 이온 이동에 미치는 영향)

  • Lee, Hwang-Hyun;Hah, Jong-Sik;Kim, Ku-Ja
    • The Korean Journal of Physiology
    • /
    • v.21 no.2
    • /
    • pp.157-167
    • /
    • 1987
  • Benzyl alcohol is known to have dual effect on the red blood cell shape change. At low concentration up to 50 mM benzyl alcohol transformed the shape from discocyte to stomatocyte by preferent binding to the inner hemileaflet, however, at higher concentratransformed the shape from discocyte to stomatocyte by preferential binding to the inner monolayer, however, at higher concentration above 50 mM benzyl alcohol transformed to echinocyte by affecting both monolayers. These results suggest that the effect of benzyl alcohol on the red blood cell shape and $Ca^{++}$ transport across cardiac cell membranes to assess the effects of the drug on the structures and functions of the biological cell membranes. The results are as follows: 1) Benzyl alcohol up to 40 mM caused progressive stomatocytic shap change of the red blood cell but above 50 mM benzyl alcohol caused echinocytic shape change. 2) Benzyl alcohol up to 40 mM inhibited both osmotic hemolysis and osmotic volume change of the red blood cell in hypotonic and hypertonic NaCl solutions, respectively. 3) Benzyl alcohol inhibited both Bowditch Staircase and Wood-worth Staircase phenomena at rat left auricle. 4) Benzyl alcohol at concentration of 5 mM increased $Ca^{++}-ATPase$ activity of red blood cell ghosts slightly but above S mM benzyl alcohol inhibited the $Ca^{++}-ATPase$ activity. 5) Benzyl alcohol at concentrations of 5 mM and 10 mM increased $Ca^{++}-ATPase$ activity slightly at rat gastrocnemius muscle S.R. but above 10 mM benzyl alcohol inhibited the $Ca^{++}-ATPase$ activity. Above results indicate that benzyl alcohol inhibit water permeability and $Ca^{++}$ transport across cell membranes in part via effects on the fluidity and transition temperatures of the bulk lipid by preferential intercalation into cytoplasmic monolayer and in part via other effect on the conformational change of active sites of the $Ca^{++}-ATPase$ molecule extended in cytoplasmic face.

  • PDF

The Effect of Benzyl Alcohol on Dyeing Properties of Silk fiber (I) - The Rate of Dyeing by Milling Acid Dye - (Benzyl Alcohol이 견섬유의 염색성에 미치는 영향(I) - Milling계 산성염료에 의한 염색속도 -)

  • 탁태문;김종호;배도규
    • Textile Coloration and Finishing
    • /
    • v.4 no.2
    • /
    • pp.55-63
    • /
    • 1992
  • The effects of benzyl alcohol on the properties of dyeing kinetic of silk fibroin were studied. The acid dye used was C.I. Acid Red 114. The half dyeing time is shorten by addition of benzyl alcohol. The diffusion activation energy is higher with the increase of the solvent. The rate of dyeing at benzyl alcohol addition to the purified silk fibroin is faster than that of the unpurified one.

  • PDF

Effect of Polysorbate 80 and Benzyl Alcohol on the Solubility of Amiodarone Hydrochloride

  • LEONTIEV, Viktor;LAZOVSKAYA, Olesya
    • The Korean Journal of Food & Health Convergence
    • /
    • v.5 no.4
    • /
    • pp.13-17
    • /
    • 2019
  • Amiodarone hydrochloride is an antiarrhythmic agent which has low aqueous solubility and presents bioavailability problem. These properties are a challenge for the pharmaceutical industry. Inclusion of lipophilic compound in the hydrophobic core of micelles, i.e. self-assembled structures based on surfactants in aqueous solution, is one way of increasing the solubility. Intravenous formulation of amiodarone hydrochloride with polysorbate 80 as a detergent and benzyl alcohol as a co-solvent is used in medical practice. This paper aimed to study the effect of polysorbate 80 and benzyl alcohol on the water solubility of amiodarone hydrochloride. Formation of mixed micelles consisting of nonionic surfactant polysorbate 80 and cationic amiodarone with chloride counterion was investigated by fluorescence spectroscopy. Benzyl alcohol was found to decrease the stability of the mixed micelles and lead to crystallization of amiodarone hydrochloride. The greatest amounts of crystals formed at 4℃ for 30 days in the model drug solutions with polysorbate 80 concentrations of 100.1 mg/mL and 97.9 mg/mL. A change of the polysorbate 80 concentration and avoidance the use of benzyl alcohol are recommended to improve the stability of the parenteral dosage form. These results can open new perspectives in the optimization of amiodarone intravenous formulations.

Production of Ligninase in Agitated Submerged Cultures of Phanerochaete chrysosporium Diffuse Mycelia (진탕 배양(培養)에 의한 Phanerochaete chrysosporium Diffuse 균사(菌絲)의 Ligninase 생성(生成)에 관한 연구(硏究))

  • Kim, Kyung-Soo;Kim, Young-Ho;Kang, An-Seok;You, Chang-Hyun;Cha, Dong-Yeul;CROAN, SUKI C.
    • The Korean Journal of Mycology
    • /
    • v.21 no.4
    • /
    • pp.310-315
    • /
    • 1993
  • Phanerochaete chrysosporium is a white rot fungus which secrets a family of lignin-degrading enzymes under nutrient limitation. Ligninase was extracellularly produced in agitated submerged cultures of P. chrysosporium, SC 26. Addition of veratryl alcohol(4 mM), and benzyl alcohol(10 mM) with 0.1% Tween 20 to the culture medium stimulated ligninase production. However, ligninase was not detected when both treatments of veratryl alcohol and benzyl alcohol without Tween 20 were added to the medium. Addition of 0.1 % Tween 20 to the culture medium had little effect on ligninase activity. The ligninase activity was maximum on day 5-8 for veratryl alcohol, and benzyl alcohol with 0.1 % Tween 20 additive medium.

  • PDF

Volatile Flavor Components of Chestnut Honey Produced in Korea (한국산 밤꿀의 휘발성 향기성분)

  • Kang, Kui-Hwan
    • Applied Biological Chemistry
    • /
    • v.41 no.1
    • /
    • pp.84-88
    • /
    • 1998
  • Composition of volatile flavor components of chestnut flower sand honey were investigated by GC and GC-MS. A total of 64 components including 14 aromatic compounds, 13 hydrocarbons, 7 fatty acids, 4 terpenes, 12 oxygenated hydrocarbons, and 7 misellaneous compounds and a total 41 components including 7 aromatic compounds, 16 hydrocarbons, 12 fatty acids, 1 terpene, 2 oxygenated hydrocarbons, and 3 misellaneous compounds were identified from total volatile concentrates of chestnut flower and honey respectively. The main components of flower volatile were 2-phenyl ethyl alcohol, 1-phenyl ethyl alcohol and benzyl alcohol which comprise 49.02% of this volatiles The main components of flower volatile were 2-phenyl ethyl alcohol, 1-phenyl ethyl alcohol and benzyl alcohol which comprise 49.02% of this volatiles. Aromatic compounds such as 2-phenyl ethyl alcohol, benzyl alcohol, 1-phenyl ethyl alcohol, 1-(2-aminophenyl) ethanone act as major contributor to the characteristic honey-like flavor of chestnut honey.

  • PDF

Biphasic Dynamic Kinetic Resolution of ρ,α-Dimethyl Benzyl Alcohol over Zeolite-Enzyme Catalysts (제올라이트-효소 촉매를 이용한 ρ,α-Dimethyl Benzyl Alcohol의 2상 동적 속도론적 광학분할)

  • Cha, Yeon-Ju;Ko, Moon-Kyu;Park, Yeung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.658-664
    • /
    • 2006
  • $\rho$, $\alpha$-dimethyl benzyl alcohol was resolved by the biphasic dynamic kinetic resolution (DKR). Acidic zeolite was used as a racemization catalyst while immobilized enzyme was employed for kinetic resolution. The effects of the process variables including nature of acyl donor, reaction temperature, substrate concentration, ratio of the two catalysts and stirring rate on the conversion and enantiomeric purity of the product were investigated. In DKR of $\rho$, $\alpha$-dimethyl benzyl alcohol, the product of 99% ee was obtained with a maximum yield of 88%. The high performance of the catalyst system was maintained in the condition of higher TON and under repeated use.

The Measurement and Prediction of the Combustible Properties of of Benzyl-Alcohol for MSDS (Material Safety Data Sheet) (MSDS (Material Safety Data Sheet)를 위한 벤질알코올 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.190-194
    • /
    • 2017
  • The combustion properties for the prevention of the fire and explosion in the work place are flash point, explosion limit, autoignition temperature (AIT) etc.. The using of the corrective combustion properties of the MSDS (Material Safety Data Sheet) of the handling substance for the chemical process safety is very important. For the safe handling of benzyl alcohol which is widely used in the chemical industry, the flash point and the AIT were measured. And, the lower explosion limit (LEL) of benzyl alcohol was calculated by using the lower flash point which obtained in the experiment. The flash points of benzyl alcohol by using the Setaflash and Pensky-Martens closed-cup testers measured $90^{\circ}C$ and $93^{\circ}C$, respectively. The flash points of benzyl alcohol by using the Tag and Cleveland open cup testers are measured $97^{\circ}C$ and $100^{\circ}C$. The experimental AIT of benzyl alcohol by ASTM 659E tester was measured as $408^{\circ}C$. The LEL of benzyl alcohol measured by Setaflash closed-cup apparatus was calculated as 1.17 vol% at $90^{\circ}C$. In this study, it was to possible predict the LEL by using the lower flash point of benzyl alcohol which measured by Setaflash closed-cup tester.

Swelling Properties of Poly(ethylene terephthalate) Fiber in Mixed Solvent(I) -Rate of Swelling- (혼합용매중에서의 Poly(ethylene terephthalate) 섬유의 팽윤성(I) -팽윤속도-)

  • 이문철;박병기;조현혹
    • Textile Coloration and Finishing
    • /
    • v.6 no.3
    • /
    • pp.37-43
    • /
    • 1994
  • Commercial Poly(ethylene terephthalate) (PET) filaments were treated in solvents mixtures such as benzyl alcohol/perchloroethylene(BA/PER), benzyl alcohol/trichloroethylene(BA/TRI), benzyl alcohol/ethylene chloride(BA/EC), metha nol/perchloroethylene(ME/PER), and methanol/trichloroethyle(ME/TRI). Swelling of PET in solvent mixtures showed rapidly in the middle range of mixture ratio. Contribution of swelling of each component to total swelling of binary mixtures with increasing treated time was generally showed in proportion to the mixture ratio of the each component in dependence of the extend of swelling.

  • PDF

Dyeing Properties of PTT Fiber (2) - Effect of Solvent Treatment on Dyeing and Physical Properties of PTT Fiber - (PTT 섬유의 염색성 (2) - 용제 처리한 PTT 섬유의 염색성 및 물성 -)

  • 이두환;정동석;김호정;이문철
    • Textile Coloration and Finishing
    • /
    • v.15 no.4
    • /
    • pp.8-16
    • /
    • 2003
  • Poly(trimethylene terephthalate)(PTT) fiber was pretreated with organic solvent/water solution of various compositions. The organic solvents used in this experiment were benzyl alcohol, n-buthanol, and N,N-dimethylformamide(DMF). Density of the fibers were investigated as a measure of crystallite region. The dye uptake increased in the order of pretreatment with hot water < untreated < 5% benzyl alcohol < 100% benzyl alcohol < 90% benzyl alcohol; hot water < untreated $\risingdotseq$ 5% butanol < 100% beutanol < 90% butanol; hot water $\risingdotseq$ 5% DMF < untreated < 90% DMF < 100% DMF. The dye uptake increases with increase of crystallinity. It seems likely that the recrystallization process during the pretreatment with organic solvent/water solutions leads to an increase in the microvoid and then a large increase in the dye uptake. Also the dyeing rate increased and the dyeing transition temperature decreased with the pretreatments. The results obtained are corresponds with the plasticization of the fiber structure formed during the pretreatrnent.

Benzyl Alcohol Oxidation over H5PMo10V2O40 Catalyst Chemically Immobilized on Sulfur-containing Mesoporous Carbon (황이 포함된 중형기공성 탄소에 화학적으로 고정화된 H5PMo10V2O40 촉매 상에서 Benzyl Alcohol 산화반응)

  • Gim, Min Yeong;Kang, Tae Hun;Choi, Jung Ho;Song, In Kyu
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.419-424
    • /
    • 2016
  • $H_5PMo_{10}V_2O_{40}$ ($PMo_{10}V_2$) catalyst chemically immobilized on sulfur-containing mesoporous carbon (S-MC) was prepared, and it was applied to the benzyl alcohol oxidation reaction. S-MC was synthesized by a templating method using SBA-15 and p-toluenesulfonic acid as a templating agent and a carbon precursor, respectively. S-MC was then modified to have a positive charge, and thus, to provide sites for the immobilization of $PMo_{10}V_2$. By taking advantage of the overall negative charge of $[PMo_{10}V_2O4_{40}]^{5-}$, $PMo_{10}V_2$ catalyst was immobilized on the S-MC support as a charge matching component. It was revealed that $PMo_{10}V_2$ species were finely and molecularly dispersed on the S-MC via chemical immobilization. In the vapor-phase oxidation of benzyl alcohol, $PMo_{10}V_2$/S-MC catalyst showed higher conversion of benzyl alcohol and higher yield for benzaldehyde and benzoic acid than unsupported $PMo_{10}V_2$ catalyst. The enhanced catalytic performance of $PMo_{10}V_2$/S-MC was due to fine dispersion of $PMo_{10}V_2$ species on the S-MC via chemical immobilization.