• Title/Summary/Keyword: Benzothiadiazole derivative

Search Result 3, Processing Time 0.014 seconds

Synthesis, Photovoltaic Properties and Side-chain Effect of Copolymer Containing Phenothiazine and 2,1,3-Benzothiadiazole (Phenothiazine과 2,1,3-Benzothiadiazole을 포함한 Copolymer의 합성 및 Side-chain 치환에 따른 Photovoltaic 특성 연구)

  • Yun, Dae-Hee;Yoo, Han-Sol;Seong, Ki-Ho;Lim, Jeong-Ho;Park, Yong-Sung;Wo, Je-Wan
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.487-496
    • /
    • 2014
  • In this study, three kinds of polymers based on phenothiazine-benzothiadiazole were synthesized by a Suzuki coupling reaction, and the various side-chains were substituted at the nitrogen of phenothiazine. The optical and electrochemical properties of synthesized polymers were analyzed. The results indicate that their absorption ranged from 300 to 700 nm, and also confirmed the ideal highest occupied molecular orbital (HOMO) energy level was about -5.4 eV with low band-gap energy. Photovoltaic devices were fabricated using a photoactive layer composed of a blended solution of the polymer and $PC_{71}BM$ in ortho-dichlorobenzene The device with P2HDPZ-bTP-OBT containing the branched side-chain and long chain showed the best performance; the maximum power conversion efficiency of this device was 2.4% (with $V_{OC}$ : 0.74 V, $J_{SC}$ : $6.9mA/cm^2$, FF : 48.0%).

Synthesis and Characterization of Power Conversion Efficiency of D/A Structure Conjugated Polymer Based on Benzothiadiazole-Benzodithiophene (Benzothiadiazole-benzodithiophene을 기반으로 한 D/A구조의 공액 고분자 합성 및 광전변환 효율 특성 개선 연구)

  • Seong, Ki-Ho;Yun, Dae-Hee;Woo, Je-Wan
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.537-543
    • /
    • 2013
  • In this study, the push-pull structure polymer for organic photo voHaics (OPVs) was synthesized and characterized. The poly{4,8-didodecyloxybenzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5]-thiadiazole} (PDBDT-TBTD) was synthesized by Stille coupling reaction using the benzothiadiazole (BTD) derivative as an electron acceptor and benzodithiophene (BDT) derivative as an electron donor. The structure of monomers and polymers was identified by $^1H-NMR$ and GC-MS. The optical, physical and electrochemical properties of the conjugated polymer were identified by GPC, TGA, UV-Vis and cyclic voltammetry. The number average molecular weight ($M_n$) and initial decomposition temperature (5% weight loss temperature, $T_d$) of PDBDT-TBTD were 6200 and $323^{\circ}C$, respectively. The absorption maxima on the film was about 599 nm and the optical band gap was about 1.70 eV. The structure of device was ITO/PEDOT : PSS/PDBDT-TBTD : $PC_{71}BM/BaF_2/Ba/Al$. PDBDT-TBTD and $PC_{71}BM$ were blended with the weight ratio of 1:2 which were then used as an optical active layer. The power conversion efficiency (PCE) of fabricated device was measured by solar simulator and the best PCE was 2.1%.

Synthesis and Photovoltaic Properties of Conjugated Polymers Having Push-pull Structure according to the Type of Side-chain in the N-Substituted Phenothiazine (Push-pull 구조의 공액 고분자 합성 및 Phenothiazine의 질소 원자에 치환된 Side-chain에 따른 유기박막태양전지로의 특성 연구)

  • Seong, Ki-Ho;Yun, Dae-Hee;Woo, Je-Wan
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.624-631
    • /
    • 2014
  • In this study, a new series of conjugated polymer 3-(5-(5,6-bis(octyloxy)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)-10-(4-(octyloxy)phenyl)-10H-phenothiazine (P1) and 3-(5-(5,6-bis(octyloxy)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)-10-(4-((2-ethylhexyl)oxy)phenyl)-10H-phenothiazine (P2) were synthesised and organic photovoltaics (OPVs) properties were characterized. The push-pull structure polymer consisted of phenothiazine derivative as an electron donor and benzothiadiazole derivative as an electron acceptor. The aliphatic chain substituted aromatic ring was substituted at the position of N in phenothiazine for the electron-rich and improved solubility. Excellent thermal stabilities of P1 and P2 were confirmed by measured Td values as 321.9 and $323.7^{\circ}C$, respectively and the degrees of polymerization were 4,911 (P1) and 5,294 (P2). The maximum absorption wavelength of P1 and P2 were 549 and 566 nm, respectively. The device was fabricated and the OPVs property was measured. As a result, the power efficiency of conversion for P1 and P2 were 0.96 and 0.90%, respectively.