• Title/Summary/Keyword: Benzo[c]phenanthridine alkaloid

Search Result 5, Processing Time 0.021 seconds

Improvement of Growth and Benzo[c]phenanthridine Alkaloids Production by Modifying Nitrogen Source in Suspension Cell Culture of Eschscholtzia californica (Eschscholtzia californica의 현탁 세포배양에서 질소원 조절에 의한 세포 성장 및 Benzo[c]phenanthridine Alkaloids 생산량 향상)

  • Lee, Song-Eun;Rhee, Hong-Soon;Son, Seok-Young;Park, Jong-Moon
    • KSBB Journal
    • /
    • v.24 no.2
    • /
    • pp.195-200
    • /
    • 2009
  • The effect of nitrogen source on cell growth and benzo[c]phenanthridine alkaloids production by modifying $NO_3\;^-:NH_4\;^+$ ratio in cell suspension culture of Eschscholtzia califarnica was investigated. When total nitrogen concentration is maintained (60 mM), maximum benzo[c]phenanthridine alkaloids production is about 60.72 mg/L at 50:10 (mol/mol). This productivity was 3.8 times higher than that obtained when cells were grown instandard MS medium. The decrease of $NO_3\;^-:NH_4\;^+$ ratio at 60 mM of total nitrogen caused the decline of both growth and benzo[c]phenanthridine alkaloids production. Under the same concentration of $N0_3\;^-$ (50 mM), higher concentration of $NH_4\;^+$ inhibited cell growth strongly but induced alkaloids production slightly. Also, under the same concentration of $NH_4\;^+$ (25 mM), higher concentration of $N0_3\;^-$ induced alkaloids production strongly but high concentration of $N0_3\;^-$ (${\geq}$100 mM) interfered alkaloids instead. Maximum benzo[c]phenanthridine alkaloids production is about 62.71 mg/L at 50:25 (mol/mol). These results suggest that higher biomass and higher alkaloids production could be obtained by optimizing each nitrogen concentration as well as $NO_3\;^-:NH_4\;^+$ ratio in the culture medium. Nitrate and ammonium in culture medium have distinct role in the regulation of growth and alkaloids production; ammonium had a strong influence on growth while nitrate had an influence on alkaloids production.

Synthesis of Benzo[c]phenanthridine Derivatives and their in Vitro Antitumor Activities

  • Cho, Won-Jea;Yoo, Su-Jeong;Chung, Byung-Ho;Choi, Bo-Gil;Cheon, Seung-Hoon;Whang, Soon-Ho;Kim, Sin-Kyu;Kang, Boo-Hyon;Lee, Chong-Ock
    • Archives of Pharmacal Research
    • /
    • v.19 no.4
    • /
    • pp.321-325
    • /
    • 1996
  • Aiming at the development of anticancer agents by modification of phenolic benzo[c]phenanthridine alkaloid, additional hydroxyl group was put on C10 position of fagaridine (1) by a biomimetic synthetic procedure to afford 10-hydroxyfagaridine (12). All of the synthetic intermediates were also screened in vitro antitumor activities against five different cell lines as well as 12. Among them the representative cytotoxic results are shown as follows; P-quinone (11) $[ED_50;(A549=0.22; {\mu}g/ml)$, $(HCT;15=0.21 {\mu}g/ml)$, fagaridine (1) $(HCT;15=0.41 {\mu}g/ml)$, olefin (6) $(HCT; 15=0.06 {\mu}g/ml)$, acetal (7) $(SKMEL-2=0.07 {\mu}g/ml)$, dihydrofagaridne (10) $(A549=0.38 {\mu}g/ml)$, 10-hydroxyfagaridine (12) $(A 549=0.45{\mu}g/mi)$. From these observation three main remarks can be drawn; (i) the iminium part of benzo[c]phenanthridine is not essential for showing acitvities, (ii) the additional hydroxyl group did not contribute to enhance the cytotoxicity, (iii) the 3-arylisoquinolin-1(2H)-one derivatives were found to display significant in vitro antitumor activity.

  • PDF

Synthesis of Benzophenanthridine-Related Alkaloids (벤조펜안드리딘과 관련된 알칼로이드의 합성)

  • Kim, Sin-Kyu;Lee, Hyung-Won;Kim, In-Jong;Lee, Ma-Se
    • YAKHAK HOEJI
    • /
    • v.36 no.3
    • /
    • pp.250-254
    • /
    • 1992
  • Benzo[C]phenanthidine alkaloids were found to exhibit considerably strong antileukemic activies. These alkaloids have been shown to be biosynthesized from the corresponding alkaloids throung an oxidative $C_6-N$ bond cleavage followed by recyclization between $C_6\;and\;C_{13}$ position of the protoberberine. Recently we have achieved the biomimetic transformation of protoberberine alkaloid, berberine into benzo[C]phenanthridine alkaloid, chelerythrine.

  • PDF