• Title/Summary/Keyword: Benthic Organic Carbon Oxidation Rate

Search Result 2, Processing Time 0.019 seconds

Estimation of Oxygen Consumption Rate and Organic Carbon Oxidation Rate at the Sediment/Water Interface of Coastal Sediments in the South Sea of Korea using an Oxygen Microsensor (산소 미세전극을 이용한 남해연안 퇴적물/해수 계면에서 산소소모율 및 유기탄소 산화율 추정)

  • Lee, Jae-Seon;Kim, Kee-Hyun;Yu, Jun;Jung, Rae-Hong;Ko, Tae-Seung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.392-400
    • /
    • 2003
  • We used an oxygen microelectrode to measure the vertical profiles of oxygen concentration in sediments located near point sources of organic matter. The measurements were carried out between 13th and 17th May, 2003, in semi-closed bay and coastal sediments in the central part of the South Sea. The measured oxygen penetration depths were extremely shallow and ranged from 1.30 to 3.80 mm. This suggested that the oxidation and reduction reactions in the early diagenesis should be studied at the mm depth scale. In order to estimate the oxygen consumption rate, we applied the one-dimension diffusion-reaction model to vertical profiles of oxygen near the sediment/water interface. Oxygen consumption rates were estimated to be between 10.8 and 27.6 mmol O$_2$ m$\^$-2/ day$\^$-1/(average: 19.1 mmol O$_2$ m$\^$-2/ day$\^$-1/). These rates showed a positive correlation with the organic carbon of the sediments. The corresponding benthic organic carbon oxidation rates calculated using an modified Redfield ratio (170/110) at the sediment/water interface were in the range of 89.5-228.1 mg C m$\^$-2/ day$\^$-1/(average: 158.0 mg C m$\^$-2/ day$\^$-1/). We suggest that these results are maximum values at the presents situation in the bay because the sampling sites were located near point sources of organic materials. This study will need to be carried out at many coastal sites and throughout the seasons to allow an understanding of the mechanisms of eutrophication e.g. the spatial distribution of oxygen consumption within the oxic zone and hypoxic conditions in the coastal sea.

Hypoxia and Characteristics of Nutrient Distribution at the Bottom Water of Cheonsu Bay Due to the Discharge of Eutrophicated Artificial Lake Water (간척지 내 부영양화된 호수 수괴의 간헐적 유출로 인한 천수만 저층수의 Hypoxia 발생과 영양염 분포 특성)

  • Lee, Dong-Kwan;Kim, Ki-Hyun;Lee, Jae-Sung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.854-862
    • /
    • 2016
  • In summer 2010, we measured the concentration of dissolved oxygen (DO) and nutrients in the water collected at the bottom of Cheonsu Bay, off the west coast of Korea. We also measured nutrient fluxes across the sediment-water interface by deploying a fully-automated benthic lander, which collected time-series water samples inside a benthic chamber. We confirmed on-going hypoxia in the northern parts of the bay where polluted lake water was discharged. DO content in the water at the bottom was 2 mg/l, compared to 5 mg/l at the mouth of the bay in the south. Nutrient concentrations showed a trend that was opposite to that of DO. The variation of N/P ratios implies phosphate desorption and a release of nutrients caused by hypoxia. The organic carbon oxidation rate and oxygen consumption rate in the northern parts of the bay were about twice as fast as those at the mouth of the bay. Benthic fluxes of nutrients in the northern part of the bay were 4 to 6 times higher than those at the mouth. Our results imply that it is important to understand the role of hypoxia events to make an accurate estimation of material fluxes across the sediment-water interface.