• Title/Summary/Keyword: Beneficial organisms

Search Result 49, Processing Time 0.021 seconds

Oxidative Stress and Antioxidants in Disease and Cancer: A Review

  • Gupta, Rakesh Kumar;Patel, Amit Kumar;Shah, Niranjan;Choudhary, Arun Kumar;Jha, Uday Kant;Yadav, Uday Chandra;Gupta, Pavan Kumar;Pakuwal, Uttam
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4405-4409
    • /
    • 2014
  • Reactive oxygen species (ROS), highly reactive molecules, are produced by living organisms as a result of normal cellular metabolism and environmental factors, and can damage nucleic acids and proteins, thereby altering their functions. The human body has several mechanisms to counteract oxidative stress by producing antioxidants. A shift in the balance between oxidants and antioxidants in favor of oxidants is termed as "oxidative stress". Paradoxically, there is a large body of research demonstrating the general effect of oxidative stress on signaling pathways, less is known about the initial and direct regulation of signaling molecules by ROS, or what we term the "oxidative interface." This review focuses on the molecular mechanisms through which ROS directly interact with critical signaling molecules to initiate signaling in a broad variety of cellular processes, such as proliferation and survival (MAP kinases and PI3 kinase), ROS homeostasis, and antioxidant gene regulation (Ref-1 and Nrf-2). This review also deals with classification as well as mechanisms of formation of free radicals, examining their beneficial and deleterious effects on cellular activities and focusing on the potential role of antioxidants in preventing and repairing damage caused by oxidative stress. A discussion of the role of phytochemical antioxidants in oxidative stress, disease and the epigenome is included.

Yeast copper-dependent transcription factor ACE1 enhanced copper stress tolerance in Arabidopsis

  • Xu, Jing;Tian, Yong-Sheng;Peng, Ri-He;Xiong, Ai-Sheng;Zhu, Bo;Jin, Xiao-Fen;Gao, Jian-Jie;Hou, Xi-Lin;Yao, Quan-Hong
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.752-757
    • /
    • 2009
  • Copper is essential but toxic in excess for aerobic organisms. Yeast transcription factor ACE1 functions as a sensor for copper and an inducer for the transcription of CUP1. In addition, ACE1 can activate the transcription of superoxide dismutase gene (sod1) in response to copper. In this study, we introduced the yeast ACE1 into Arabidopsis and analyzed its function in plant. Under high copper stress, the transgenic plants over-expressing ACE1 showed higher survival rate than the wild-type. We also found that over-expression of ACE1 in Arabidopsis increased the activities of SOD and POD, which were beneficial to the cell in copper buffering. Excess copper would suppress the expression of chlorophyll biosynthetic genes in Arabidopsis, RT-PCR analysis revealed that over-expression of ACE1 decrease the suppression. Together, our results indicate that ACE1 may play an important role in response to copper stress in Arabidopsis.

Modified Toluidine Blue: an Alternative Stain for Helicobacter pylori Detection in Routine Diagnostic Use and Post-eradication Confirmation for Gastric Cancer Prevention

  • Sakonlaya, Dussadee;Apisarnthanarak, Anucha;Yamada, Nobutaka;Tomtitchong, Prakitpunthu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6983-6987
    • /
    • 2014
  • Background: Modified toluidine blue staining (MTBs) is a simple, inexpensive and time saving method to detect H. pylori in gastric biopsy specimens. As a metachromatic stain, it simultaneously highlights intestinal metaplasia, a gastric cancer precancerous lesion. The aim of this study was to assess the reliability of MTBs compared with hematoxylin-eosin (H&E) for H. pylori detection using immunoperoxidase staining as the gold standard. This technique would be beneficial for a routine diagnosis and confirmation of H. pylori eradication in developing countries where endoscopic-based approaches are dominant. Materials and Methods: Esophagogastroduodenoscopy with triple site gastric biopsies was undertaken in 207 dyspeptic patients at Thammasat University Hospital, Thailand between 1997 and 1999. H&E, MTBs and immunoperoxidase staining were applied to each specimen. The presence or absence of H. pylori with each stain was interpreted separately and the sensitivity, specificity, positive and negative predictive values of H&E and MTBs were calculated. Results: A total of 282 specimens from 207 patients were evaluated. Using immunoperoxidase staining, organisms were positive in 117 specimens (41%). MTBs proved almost equally sensitive as immunoperoxidase (99%) and significantly more sensitive than H&E (85%). It has comparable specificity (96% vs 96%), PPV (95% vs 94%), and NPV (99% vs 90%) to H&E, using immunoperoxidase staining as gold standard. MTBs compared with immunoperoxidase staining, is cheaper (2 USD vs 12 USD) and faster (20 min vs 16 hrs) compared to immunoperoxidase staining. Conclusions: MTBs is effective, economical and easy to use in daily practice for the detection of H. pylori in gastric biopsy specimens. In addition to saving time in evaluating H. pylori associated gastritis, with a high sensitivity and ability to demonstrate intestinal metaplasia, the technique may have a role in confirmation of H. pylori eradication for gastric cancer prevention in a developing country setting.

IDENTIFICATION OF GENES EXPRESSED IN LOW-DOSE-RATE γ-IRRADIATED MOUSE WHOLE BRAIN

  • Bong, Jin Jong;Kang, Yu Mi;Choi, Seung Jin;Kim, Dong-Kwon;Lee, Kyung Mi;Kim, Hee Sun
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.166-171
    • /
    • 2013
  • While high-dose ionizing radiation results in long term cellular cytotoxicity, chronic low-dose (<0.2 Gy) of X- or ${\gamma}$-ray irradiation can be beneficial to living organisms by inducing radiation hormesis, stimulating immune function, and adaptive responses. During chronic low-dose-rate radiation (LDR) exposure, whole body of mice is exposed to radiation, however, it remains unclear if LDR causes changes in gene expression of the whole brain. Therefore, we aim to investigate expressed genes (EGs) and signaling pathways specifically regulated by LDR-irradiation ($^{137}Cs$, a cumulative dose of 1.7 Gy for total 100 days) in the whole brain. Using microarray analysis of whole brain RNA extracts harvested from ICR and AKR/J mice after LDR-irradiation, we discovered that two mice strains displayed distinct gene regulation patterns upon LDR-irradiation. In ICR mice, genes involved in ion transport, transition metal ion transport, and developmental cell growth were turned on while, in AKR/J mice, genes involved in sensory perception, cognition, olfactory transduction, G-protein coupled receptor pathways, inflammatory response, proteolysis, and base excision repair were found to be affected by LDR. We validated LDR-sensitive EGs by qPCR and confirmed specific upregulation of S100a7a, Olfr624, and Gm4868 genes in AKR/J mice whole brain. Therefore, our data provide the first report of genetic changes regulated by LDR in the mouse whole brain, which may affect several aspects of brain function.

Effects of Berberine on Lymphocyte Proliferation and GM-CSF Production in Mice. (마우스 림프구증식과 GM-CSF생성에 미치는 Berberine의 효과)

  • Kim, Eun-Young;Rho, Min-Hee;Chung, Yang-Sook;Kim, Hyoung-Su;Kim, Kwang-Hyuk
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.694-698
    • /
    • 2007
  • Berberine, an alkaloid initially isolated from chinese herbal medicine, has antibiotic activities against a variety of organisms including bacteria, viruses, fungi, protozoans, and chlamydia. Furthermore, berberine has shown a number of beneficial effects, including anti-tumor, anti-inflammation, and vasodilatory effects. In this work we have investigated the effects of berberine on lymphocyte proliferation and GM-CSF production in mice. Mouse splenocytes were incubated with berberine and concanavalin A(Con A) to observe the effects on cell proliferation. The culture supernatants of splenocytes exposed to berberine, berberine plus LPS, and berberine plus Con A were harvested to assay GM-CSF. The cell proliferation of nice splenocytes exposed to berberine only($1{\mu}g/ml$) was increased significantly more than PBS(control) group. But the Con A-induced cell growth was inhibited by berberine. The GM-CSF production from mice splenocyte culture exposed to berberine only was increased in comparison with PBS(control) group, but the production of it with LPS or Con A was inhibited by berbeline. The present findings may explain lympocyte proliferating and regulating effects of berberine.

Control of Anthracnose and Gray Mold in Pepper Plants Using Culture Extract of White-Rot Fungus and Active Compound Schizostatin

  • Dutta, Swarnalee;Woo, E-Eum;Yu, Sang-Mi;Nagendran, Rajalingam;Yun, Bong-Sik;Lee, Yong Hoon
    • Mycobiology
    • /
    • v.47 no.1
    • /
    • pp.87-96
    • /
    • 2019
  • Fungi produce various secondary metabolites that have beneficial and harmful effects on other organisms. Those bioactive metabolites have been explored as potential medicinal and antimicrobial resources. However, the activities of the culture filtrate (CF) and metabolites of whiterot fungus (Schizophyllum commune) have been underexplored. In this study, we assayed the antimicrobial activities of CF obtained from white-rot fungus against various plant pathogens and evaluated its efficacy for controlling anthracnose and gray mold in pepper plants. The CF inhibited the mycelial growth of various fungal plant pathogens, but not of bacterial pathogens. Diluted concentrations of CF significantly suppressed the severity of anthracnose and gray mold in pepper fruits. Furthermore, the incidence of anthracnose in field conditions was reduced by treatment with a 12.5% dilution of CF. The active compound responsible for the antifungal and disease control activity was identified and verified as schizostatin. Our results indicate that the CF of white-rot fungus can be used as an eco-friendly natural product against fungal plant pathogens. Moreover, the compound, schizostatin could be used as a biochemical resource or precursor for development as a pesticide. To the best of our knowledge, this is the first report on the control of plant diseases using CF and active compound from white-rot fungus. We discussed the controversial antagonistic activity of schizostatin and believe that the CF of white-rot fungus or its active compound, schizostatin, could be used as a biochemical pesticide against fungal diseases such as anthracnose and gray mold in many vegetables.

Mangiferin ameliorates cardiac fibrosis in D-galactose-induced aging rats by inhibiting TGF-β/p38/MK2 signaling pathway

  • Cheng, Jing;Ren, Chaoyang;Cheng, Renli;Li, Yunning;Liu, Ping;Wang, Wei;Liu, Li
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.131-137
    • /
    • 2021
  • Aging is the process spontaneously occurred in living organisms. Cardiac fibrosis is a pathophysiological process of cardiac aging. Mangiferin is a well-known C-glucoside xanthone in mango leaves with lots of beneficial properties. In this study, rat model of cardiac fibrosis was induced by injected with 150 mg/kg/d D-galactose for 8 weeks. The age-related cardiac decline was estimated by detecting the relative weight of heart, the serum levels of cardiac injury indicators and the expression of hypertrophic biomakers. Cardiac oxidative stress and local inflammation were measured by detecting the levels of malondialdehyde, enzymatic antioxidant status and proinflammatory cytokines. Cardiac fibrosis was evaluated by observing collagen deposition via masson and sirius red staining, as well as by examining the expression of extracellular matrix proteins via Western blot analysis. The cardiac activity of profibrotic TGF-β1/p38/MK2 signaling pathway was assessed by measuring the expression of TGF-β1 and the phosphorylation levels of p38 and MK2. It was observed that mangiferin ameliorated D-galactose-induced cardiac aging, attenuated cardiac oxidative stress, inflammation and fibrosis, as well as inhibited the activation of TGF-β1/p38/MK2 signaling pathway. These results showed that mangiferin could ameliorate cardiac fibrosis in D-galactose-induced aging rats possibly via inhibiting TGF-β/p38/MK2 signaling pathway.

Integrated Pollinator-Pest Management (IPPM) Strategy as Future Apple IPM (사과 IPM 미래 전망: 화분매개자 친화형 병해충 종합관리 (IPPM) 전략)

  • Jung, Chuleui
    • Korean journal of applied entomology
    • /
    • v.60 no.1
    • /
    • pp.145-154
    • /
    • 2021
  • Integrated pest management system in Korean apple has significantly advanced for last few decades. However harmful effects of pesticides threats the ecosystem services of natural enemies and pollinators. Apple require cross-pollination and Insect pollination with diversity and abundance is one of the keys to profitable apple production in quantity and quality as well. Thus crop protection tools are to be administered in harmony to meet the pest suppression and protection of beneficial organisms such as natural enemies and pollinators. Adding onto the established IPM system, integrated pollinator-pest management (IPPM) concept is proposed as the future direction of apple IPM. For this, ecological enginnering of creating habitats for pollinators, landscape management and agroecosytem diversification as well as selective soft pesticide uses on time guided by pest monitoring and phenologyand targeted delivery are further proposed. Recent shift of agroecosystem from climate change and new pest outbreaks require new paradigm of pest management for sustainable agricultural production.

Single and Multi-Strain Probiotics Supplementation in Commercially Prominent Finfish Aquaculture: Review of the Current Knowledge

  • Sumon, Md Afsar Ahmed;Sumon, Tofael Ahmed;Hussain, Md. Ashraf;Lee, Su-Jeong;Jang, Won Je;Sharifuzzaman, S.M.;Brown, Christopher L.;Lee, Eun-Woo;Hasan, Md. Tawheed
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.681-698
    • /
    • 2022
  • The Nile tilapia Oreochromis niloticus, Atlantic salmon Salmo salar, rainbow trout Oncorhynchus mykiss, olive flounder Paralichthys olivaceus, common carp Cyprinus carpio, grass carp Ctenopharyngodon idella and rohu carp Labeo rohita are farmed commercially worldwide. Production of these important finfishes is rapidly expanding, and intensive culture practices can lead to stress in fish, often reducing resistance to infectious diseases. Antibiotics and other drugs are routinely used for the treatment of diseases and sometimes applied preventatively to combat microbial pathogens. This strategy is responsible for the emergence and spread of antimicrobial resistance, mass killing of environmental/beneficial bacteria, and residual effects in humans. As an alternative, the administration of probiotics has gained acceptance for disease control in aquaculture. Probiotics have been found to improve growth, feed utilization, immunological status, disease resistance, and to promote transcriptomic profiles and internal microbial balance of host organisms. The present review discusses the effects of single and multi-strain probiotics on growth, immunity, heamato-biochemical parameters, and disease resistance of the above-mentioned finfishes. The application and outcome of probiotics in the field or open pond system, gaps in existing knowledge, and issues worthy of further research are also highlighted.

ESKAPE Pathogens in Oral and Maxillofacial Infections

  • Lee, Hye-Jung;Moon, Seong-Yong;Oh, Ji-Su;Choi, Hae-In;Park, Sang-Yeap;Kim, Tae-Eun;You, Jae-Seek
    • Journal of Oral Medicine and Pain
    • /
    • v.47 no.1
    • /
    • pp.52-61
    • /
    • 2022
  • Purpose: Most cases of oral and maxillofacial infections are usually easily treated by proper diagnosis, elimination of causative factors, and antibiotic therapy. However, the emergence and the increase of multidrug-resistant bacteria make treatment challenging. "ESKAPE" pathogens are the most common opportunistic organisms in nosocomial infections and have resistant to commonly used antibiotics. There are many medical reviews of ESKAPE pathogens, but few in dentistry. This study focuses on oral and maxillofacial infection especially with ESKAPE pathogens. The purpose of this study is to prepare feasible data about tracing and treatment of infection related to pathogens that may be beneficial to clinicians. Methods: A total of 154 patients with oral and maxillofacial infections were reviewed by analyzing retrospectively hospitalized data in the Department of Oral and Maxillofacial surgery, Chosun University Hospital, Korea, past 5 years from January 2014 to December 2018. Based on the medical records and microbiological tests, the results were divided into two groups: infections with ESKAPE pathogens and other bacteria. Results: A total of 22 species were isolated from 154 patients. The proportion of ESKAPE pathogens among all bacterial isolates collected from infected patients was 39.6%. Causative factors, especially in post-operative infection, showed a statistically significant correlation to ESKAPE infections (29 cases). And average of treatment period in ESKAPE group was longer than non-ESKAPE groups. Overall, Klebsiella pneumoniae (60.7%) was the most frequently isolated ESKAPE pathogen. And high antibiotic resistance rates had been detected in the ESKAPE during the five-year period. Conclusions: Infections with ESKAPE pathogens are now a problem that can no longer be overlooked in Dentistry. Based on results of this study, ESKAPE pathogens were highly associated with post-operative or opportunistic infections. Clinicians should be careful about these antibiotic resistant pathogens and use appropriate antibiotics to patients while having dental treatments.