• Title/Summary/Keyword: Bending work

Search Result 617, Processing Time 0.024 seconds

A new magnetic sensor for the non-contact measurement of bending vibrations of non-ferromagnetic pipes (비자성 배관의 비접촉 굽힘 진동 측정을 위한 자기 센서의 개발)

  • Han, Soon-Woo;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1154-1158
    • /
    • 2006
  • This investigation suggests a new non-contact type sensor that can measure flexural vibrations of a non-ferromagnetic pipe. The sensor works on the reversed Lorentz force mechanism; however, anti-symmetric bias magnetic field suggested in this work should be applied to measure bending vibration of a non-ferromagnetic pipe. The importance of the suggested magnetic field is verified by a series of experiments. The sensor is applied to the bending vibration measurement and modal testing of an aluminum pipe and shows satisfactory working performance compared to others.

  • PDF

The Effect of Notch on Bending Fatigue Strength of Structural Steel (구조용 강의 굽힘 피로강도에 미치는 Notch의 영향)

  • 박노석
    • Journal of Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.64-72
    • /
    • 1976
  • This experimental work was carried out to investigate the fatigue bending strength on various shapes and sizes of notches of the domestically manufactured steel plate. The notch types tested were a circular hole, U-and V-notches. The S-N diagram for different notch shapes were discussed in relation to plan bending strength and stress concentration factor of notches .The results of the experiments are summarized as follows : (1) The difference between stress concentration factor and notch factor was greater as the radium of notch root became smaller, and these values approached to an identical value as the radium of notch root increased. (2) It was shown that the plane bending fatigue limit of bar without notch for the hotrolled steel having the tensile strength of 33.1kg/$mm^2$was 17.0kg/$mm^2$. (3) U-and V-notch had a greater effect of stress concentration factor on the endurance limit, but O-hole showed the same effect only for $\o\pm2mm$. (4) For the same radius of notch root, U-notch showed a lower value of fatigue limit compared to V-notch and O-hole.

  • PDF

On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams

  • Tagrara, S.H.;Benachour, Abdelkader;Bouiadjra, Mohamed Bachir;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1259-1277
    • /
    • 2015
  • In this work, a trigonometric refined beam theory for the bending, buckling and free vibration analysis of carbon nanotube-reinforced composite (CNTRC) beams resting on elastic foundation is developed. The significant feature of this model is that, in addition to including the shear deformation effect, it deals with only 3 unknowns as the Timoshenko beam (TBM) without including a shear correction factor. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are assessed by employing the rule of mixture. To examine accuracy of the present theory, several comparison studies are investigated. Furthermore, the effects of different parameters of the beam on the bending, buckling and free vibration responses of CNTRC beam are discussed.

Welding deformation analysis based on improved equivalent strain method to cover external constraint during cooling stage

  • Kim, Tae-Jun;Jang, Beom-Seon;Kang, Sung-Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.805-816
    • /
    • 2015
  • In the present study, external restraints imposed normal to the plate during the cooling stage were determined to be effective for reduction of the angular distortion of butt-welded or fillet-welded plate. A welding analysis model under external force during the cooling stage was idealized as a prismatic member subjected to pure bending. The external restraint was represented by vertical force on both sides of the work piece and bending stress forms in the transverse direction. The additional bending stress distribution across the plate thickness was reflected in the improved inherent strain model, and a set of inherent strain charts with different levels of bending stress were newly calculated. From an elastic linear FE analysis using the inherent strain values taken from the chart and comparing them with those from a 3D thermal elasto-plastic FE analysis, welding deformation can be calculated.

Behaviour of flush end-plate beam-to-column joints under bending and axial force

  • da Silva, Luis Simoes;de Lima, Luciano R.O.;da S. Vellasco, Pedro C.G.;de Andrade, Sebastiao A.L.
    • Steel and Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.77-94
    • /
    • 2004
  • Steel beam-to-column joints are often subjected to a combination of bending and axial forces. The level of axial forces in the joint may be significant, typical of pitched-roof portal frames, sway frames or frames with incomplete floors. Current specifications for steel joints do not take into account the presence of axial forces (tension and/or compression) in the joints. A single empirical limitation of 10% of the beam's plastic axial capacity is the only enforced provision in Annex J of Eurocode 3. The objective of the present paper is to describe some experimental and numerical work carried out at the University of Coimbra to try to extend the philosophy of the component method to deal with the combined action bending moment and axial force.

Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory

  • Zouatnia, Nafissa;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.177-183
    • /
    • 2019
  • In this paper, a new refined hyperbolic shear deformation beam theory for the bending analysis of functionally graded beam is presented. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the functionally graded beam without using shear correction factors. In addition, the effect of different micromechanical models on the bending response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present theory, the equilibrium equations are derived from the principle of virtual work. Navier type solution method was used to obtain displacement and stresses, and the numerical results are compared with those available in the literature. A detailed parametric study is presented to show the effect of different micromechanical models on the flexural response of a simply supported FG beams.

Bending analysis of power-law sandwich FGM beams under thermal conditions

  • Garg, Aman;Belarbi, Mohamed-Ouejdi;Li, Li;Tounsi, Abdelouahed
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.3
    • /
    • pp.243-261
    • /
    • 2022
  • Broad writing on the examination of sandwich structures mirrors the significance of incorporating thermal loadings during their investigation stage. In the current work, an endeavor has been made to concentrate on sandwich FGM beams' bending behaving under thermal loadings utilizing shear deformation theory. Temperature-dependent material properties are used during the analysis. The formulation includes the transverse displacement field, which helps better predict the behavior of thick FGM beams. Three-different thermal profiles across the thickness of the beam are assumed during the analysis. The study has been carried out on both symmetric and unsymmetric sandwich FGM beams. It has been observed that the bending behavior of sandwich FGM beams is impacted by the temperature profile to which it is subjected. Power-law exponent and thickness of core also affect the behavior of the beam.

MCST bending formulation of a cylindrical micro-shell based on TSDT

  • Mohammad Arefi
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.299-309
    • /
    • 2024
  • The present paper develops application of third-order shear deformation theory (TSDT) and modified couple stress theory (MCST) to size-dependent bending analysis of a functionally graded cylindrical micro-shell. The radial and axial displacement components are described based on TSDT for more accurate analysis. The effect of small scales is accounted based on MCST. The principle of virtual work is used for derivation of bending governing equations. The solution is presented for a simply-supported boundary condition to account the influence of various important parameters such as micro length scale parameter, in-homogeneous index and some dimensionless geometric parameters such as length to radius and length to thickness ratios on the bending results. A comparative analysis is presented to examine the effect of order of employed shear deformation theory on the axial and radial displacements.

An Integrated CAD System for Progressive Working of Electronic Products (전기제품의 프로그레시브 가공을 위한 통합적 CAD 시스템)

  • Kim, Jae-Hoon;Kim, Young-Min;Kim, Chul;Choi, Jae-Chan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.829-832
    • /
    • 2000
  • This paper describes a research work of developing a computer-aided design of product with bending and piercing for progressive working. An approach to the CAD system is based on the knowledge-based rules. Knowledge fur the CAD system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of three main modules, which are input and shape treatment, flat pattern layout and strip layout module. Based on knowledge-based rules, the system is designed by considering several factors, such as radius and angle of bend, material and thickness of product, complexities of blank geometry and punch profile, bending sequence, and availability of press. Strip layout drawing automatically generated by piercing with punch profiles divided into for external area is simulated in 3-D graphic forms, including bending sequences for the product with piercing and bending. Results obtained using the modules enable the manufacturer of electronic products to be more efficient in this field.

  • PDF

Viscoplastic response and collapse of 316L stainless steel tubes under cyclic bending

  • Chang, Kao-Hua;Hsu, Chien-Min;Sheu, Shane-Rong;Pan, Wen-Fung
    • Steel and Composite Structures
    • /
    • v.5 no.5
    • /
    • pp.359-374
    • /
    • 2005
  • This paper presents the experimental and theoretical results of the viscoplastic response and collapse of 316L stainless steel tubes subjected to cyclic bending. The tube bending machine and curvature-ovalization measurement apparatus, which was designed by Pan et al. (1998), were used for conducting the cyclic curvature-controlled experiment. Three different curvature-rates were controlled to highlight the characteristic of viscoplastic response and collapse. Next, the endochronic theory and the principle of virtual work were used to simulate the viscoplastic response of 316L stainless steel tubes under cyclic bending. In addition, a proposed theoretical formulation (Lee and Pan 2001) was used to simulate the relationship between the controlled cyclic curvature and the number of cycles to produce buckling under cyclic bending at different curvature-rates (viscoplastic collapse). It has been shown that the theoretical simulations of the response and collapse correlate well with the experimental data.