• 제목/요약/키워드: Bending machine

검색결과 389건 처리시간 0.029초

비파괴 시험에 의한 국산 침엽수 $2{\times}6"$ 구조부재의 등급구분 (Grading of Domestic Softwood $2{\times}6$ Structural Lumber by Non-destructive Test)

  • 심국보;박정환;김광모
    • 임산에너지
    • /
    • 제25권2호
    • /
    • pp.49-54
    • /
    • 2006
  • 국산 침엽수재의 구조재 활용에 필요한 등급구분을 위해 소나무, 잣나무와 낙엽송 $2{\times}6"$ 부재에 대해 초음파를 이용한 비파괴 방법을 적용하였다. 정적 탄성계수와 초음파 시험에 의한 동적 탄성계수의 상관관계를 나타내는 k-factor는 소나무의 경우 1.0602, 잣나무 1.0013, 낙엽송 1.2320로 나타났다. k-factor를 적용할 경우 비파괴방법에 의한 동적 탄성계수 측정에 의해 침엽수 구조부재 등급구분이 가능할 것으로 판단되었다. 기계응력 등급구분에서 소나무는 E9 이상의 등급이 전체의 76%인 반면 잣나무는 E7 이상의 등급이 전체의 85%, 낙엽송은 E11 이상의 등급이 68% 분포하였다. 정적 탄성계수와 휨파괴계수(MOR)의 상관관계도 비교적 높게 나타나 이를 동적 탄성계수로부터 추정한 k-factor와 연계할 경우 초음파 비파괴 등급구분 방법에 의해 국산 침엽수재의 휨강도 성능평가가 가능할 것으로 판단되었다.

  • PDF

생체 유리와 소다 유리침투에 따른 알루미나 세라믹의 굴곡 강도 및 PBS에서의 표면 생성물 연구 (Bending strength of alumina coated with bioglass and soda lime glass and the precipitation on the surface of coated alumina in PBS)

  • 유재양
    • 대한치과기공학회지
    • /
    • 제30권2호
    • /
    • pp.39-45
    • /
    • 2008
  • Titanium and its alloys are widely used as dental implants materials because of their excellent mechanical properties. However, the alumina and zirconia ceramics are preferred to use as the substitute of Ti implants because there is a problems in esthetics and biocompatibility in Ti implant. The the glass infiltrated alumina ceramics are studied to increase the toughness and biocompatibility. The 45S5 and soda-lime glass powder was mixed with ethanol at ratio of 1:1 and brushed on the surface of alumina. Then it was heat treated in the electric furnace at $1400^{\circ}C$ from 30 min. to 5 hours. The glass powder was controlled from 200 to $350{\mu}m$ using ball milling. After heat treatment, the glass infiltrated specimen was tested in universal testing machine to measure the bending strength. The surface microstructure of each specimen was observed with SEM. The biocompatibility of 45S5 and soda-lime glass coated alumina was investigated using PBS at $36.5^{\circ}C$ incubator. The specimen was immersed in PBS for 3, 5, 7, 10 days. After that, the surface morphology was investigated with SEM. As the results of experiment, the 45S5 bioglass infiltrated alumina show the increase of bending strength according to the increasing of heat treatment time from 30 min. to 5 hours at $1400^{\circ}C$ Finally the 1370N bending strength of alumina increased to 1958N at 5 hours heat treatment, which shows 1.4 times higher. In contrast to this, the soda lime glass infiltrated alumina ceramics shows the convex curve according to heat treatment time. Thus it shows maximum bending strength of 1820N at 1 hour heat treatment of $1400^{\circ}C$ It gives 1.3 times higher. However, the bending strength of soda lime glass infiltrated alumina is decreasing with increasing heat treatment time after 1 hour. The precipitation on the surface of 45S5 glass infiltrated alumina was revealed as a sodium phosphate ($Na_{6}P_{6}O_{24}6H_{2}O$) and the amount of precipitation is increasing with increasing of immersion time in PBS. In contrast to this, there is no precipitation are observed on the surface of soda lime glass infiltrated alumina. This implies that 45S5 glass infiltrated alumina brings more biocompatible when it is implanted in human body.

  • PDF

탄소나노복합재료와 전고체 전해질 기반의 유연성 슈퍼커패시터의 전기화학적 특성 분석 (Electrochemical performance of the flexible supercapacitor based on nanocarbon material/conductive polymer composite and all solid state electrolyte)

  • 김창현;김용렬;정현택
    • 한국응용과학기술학회지
    • /
    • 제36권1호
    • /
    • pp.200-207
    • /
    • 2019
  • 본 연구에서는 "이온젤"이라고 불리는 고분자 기반의 PVA(polyvinyl alcohol)-$H_3PO_4$의 고체 전해질에 이온성 액체 $BMIMBF_4$ (1-buthyl-3-methylimidazolium tetrafluoroborate)를 첨가하여 제조한 전고체 전해질과 환원된 그래핀 옥사이드/전도성 고분자 복합재료 기반의 전극 재료를 이용하여 유연성을 갖는 슈퍼커패시터를 제작 하였으며, 유연성에 따른 전기화학적 특성을 분석하여 보았다. 환원된 그래핀 옥사이드/전도성 고분자 복합재료와 전고체 전해질 기반의 유연성 슈퍼커패시터의 전기화학적 특성을 유연성에 따라서 측정하기 위해서 프레스로 $0.01kg/cm^2$의 일정한 압력으로 최대 100회 까지 굽힘 시험(bending test)을 진행 하였으며, 0~100 회의 굽힘 시험 이후에 순환 전압전류법(CV), 전기화학적 임피던스 분광법(EIS) 및 전정류 충 방전법(GCD)을 통하여 비교 및 분석하여 보았다. 그 결과로, 유연성 슈퍼커패시터의 초기 전기용량은 43.9 F/g으로 확인 할 수 있었고, 이 값은 50회, 100회의 굽힘 시험 후에 각각 42.0F/g, 40.1F/g로 감소하는 현상을 확인할 수 있었다. 이러한 결과로 미루어 보아 물리적인 응력이 슈퍼 커패시터의 전기화학적 특성 감소에 영향을 주는 것으로 사료되며 또한, 굽힘 횟수에 따른 슈퍼커패시터의 전기화학적 특성 감소 원인을 확인하기 위해서 굽힘 시험 전과 후의 전극표면을 전자주사 현미경으로 관찰하여 보았다.

베어링강의 기가사이클 피로 특성에 관한 연구 (Fatigue Characteristic of Bearing Steel(STB2) in Gigacycle)

  • 김상천;서창민;황병원;이태성
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.370-375
    • /
    • 2004
  • Fatigue tests were carried out to find the fatigue characteristics in the super-long life range by using a cantilever type rotational bending fatigue test machine. Three kinds of specimen in bearing steels with the quenched and tempered in air (A and B, B: shot peened after heal treatment) and under vacuum conditions(C:non-shot peened)were tested in this study. S-N curves obtained from fatigue tests of C specimen tend to come dawn again in the super-long life range due to fish-eye type cracking, while most of A and B specimens fractured by surface defects such as scratches and slip lines. This duplex S-N behavior for the high strength steels have to be reviewed by the change of fracture modes.

  • PDF

Effects of foam core density and face-sheet thickness on the mechanical properties of aluminum foam sandwich

  • Yan, Chang;Song, Xuding
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.1145-1156
    • /
    • 2016
  • To study the effects of foam core density and face-sheet thickness on the mechanical properties and failure modes of aluminum foam sandwich (AFS) beam, especially when the aluminum foam core is made in aluminum alloy and the face sheet thickness is less than 1.5 mm, three-point bending tests were investigated experimentally by using WDW-50E electronic universal tensile testing machine. Load-displacement curves were recorded to understand the mechanical response and photographs were taken to capture the deformation process of the composite structures. Results demonstrated that when foam core was combined with face-sheet thickness of 0.8 mm, its carrying capacity improved with the increase of core density. But when the thickness of face-sheet increased from 0.8 mm to 1.2 mm, result was opposite. For AFS with the same core density, their carrying capacity increased with the face-sheet thickness, but failure modes of thin face-sheet AFS were completely different from the thick face-sheet AFS. There were three failure modes in the present research: yield damage of both core and bottom face-sheet (Failure mode I), yield damage of foam core (Failure mode II), debonding between the adhesive interface (Failure mode III).

SM45C용접부에서 회전굽힘시험에 의한 피로 및 파단면의 특성 (Characteristics of Fatigue Behavior and Fracture Surfaces by Rotary Bending Test in SM45C Welding Zone)

  • 이용복
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.26-32
    • /
    • 2010
  • SM45C steel rods using generally for machine components were selected and welded by butt-GMA welding method for this study. And then they were studied about characteristics of fatigue behavior and fracture surfaces by rotary bending test. Fatigue strength in weld zone present highly in order of the boundary between deposited metal zone and heat affected zone, deposited metal zone, heat affected zone. The region of infinite life by Haigh diagram present highly in order of the boundary between deposited metal zone and heat affected zone, deposited metal zone, heat affected zone. Fatigue cracks in unnotched specimens of base metal and weld zone introduce simultaneously from extensive out-side of circumferential cross-section and propagate to the other side indicating beach markings and dimples according to consolidation of fatigue cracks. Fatigue cracks in all of notched specimens introduce simultaneously in out-side of circumferential cross-section by high stresses and propagate to center of it indicating beach markings.

A2024-T4 마찰용접(摩擦熔接)시 반경 변화에 따른 기계적(機械的) 성질(性質) 연구(硏究) (A Study on Mechanical Properties According to the Radius Change Position of Outer Circumference in A2024-T4 Friction Welding)

  • 박근형;민택기
    • 한국공작기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.109-116
    • /
    • 2007
  • The present study examined mechanical properties according to the change of outer circumference in the friction welding of A2024-T4 stock, which is used much as aircraft structure, truck wheel, stainless materials and A2024-T4 stock with 10 hollow at the center. Welding conditions were fixed at RPM 2,000rpm, friction pressure of 50MPa, friction time of 1.5sec, upset pressure of 120MPa and upset time of 2.0 seconds. From the result of this study were drawn conclusions as follows : According to the result of a tensile strength test, the solid shaft showed linear increase of tensile strength with the change of outer circumference, the hollow shaft showed maximum tensile stength when the length (L) was 2mm and decrease of tensile strength with the change of outer circumference, hardness appeared to increase and then decrease for welding interface, and it showed maximum hardness 155Hv at L=5mm of the solid shaft. Bending strength increased linearly far change of the distance (L) of outer circumference in the solid shaft and then decreased linearly in the hollow shaft. the result of examining tissue, the tissue grew finer around the welding interface and divided the basic material and the welding surface.

Analysis of the Reduction Gear in Electric Agricultural Vehicle

  • Choi, Won-Sik;Kwon, Soon-Goo
    • 한국산업융합학회 논문집
    • /
    • 제21권4호
    • /
    • pp.159-165
    • /
    • 2018
  • In electric agricultural machine a reduction gear is needed to convert the high speed rotation motion generated by DC motor to lower speed rotation motion used by the vehicle. The reduction gear consists of several spur gears. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modelling and simulation of spur gears in DC motor reduction gear is important to predict the actual motion behaviour. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of reduction gear is simulated using ANSYS workbench based on finite element method (FEM). The modal analysis was done to understand reduction gear deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on reduction gear to simulate the gear teeth bending stress and contact stress behaviour.

부품의 국부적 유연성이 차량의 동적 거동에 미치는 영향 (Flexibility Effects of Components on the Dynamic Behavior of Vehicle)

  • 이상범;임홍재
    • 한국공작기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.57-62
    • /
    • 2003
  • A fundamental structural design consideration for a vehicle system is the overall vibration characteristics in bending and torsion. Vibration characteristics of such vehicle system are mainly influenced by the static and dynamic stiffness of the vehicle body structure and also by the material and physical properties of the components attached to the vehicle body structure. In this paper, modeling techniques for the vehicle components are presented and the flexibility and mass effects of the components for the vibration characteristics of the vehicle are investigated. The $1^{st}$ torsional frequency is increased by attaching windshields to the B.I.W. (body-in-white), but the $1^{st}$ bending frequency is decreased by the mass effect. And also, the natural frequencies of the vehicle are large decreased by attaching bumpers, seats, doors, trunk-lid etc. But, suspension system rarely affects the natural frequencies of the vehicle. The study shows thai the dynamic characteristics of the vehicle system can be effectively predicted in the initial design stage.

SCNCrM-2B와 SM25C의 마찰용접특성에 관한 연구 (A Study on the Properties in Friction Weldability of SCNCrM-2B and SM25C)

  • 이세경;심영만;민택기
    • 한국공작기계학회논문집
    • /
    • 제15권4호
    • /
    • pp.49-55
    • /
    • 2006
  • This study deals with the friction welding of SM25C and SCNCrM-2B; The friction time was variable conditions under the conditions of spindle revolution 2,000rpm, friction pressure of 100MPa, upset pressure of l50MPa, and upset time of 4.0 seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied, and so the results were as follows. 1. When the friction time is 2.0 seconds, the tensile strength of friction welds was 874MPa, which is around as much as 117% of the tensile strength of base metal(SM25C), the bending strength of friction welds was 1,354MPa, which is around as much as 108.9% of the bending strength of base metal(SM25C). 2. At the same condition, the maximum vickers hardness was Hv443 at SCNCrM-2B nearby weld interface, which is higher Hv20 than condition of the friction time 0.5 seconds. 3. The results of microstructure analysis show that the structures of two base materials have fractionated and rearranged along a column due to heating and axial force during friction, which has affected in raising hardness and tensile strength.