• 제목/요약/키워드: Bending and torsional dynamics

검색결과 13건 처리시간 0.027초

Dynamics of Supercoiled and Relaxed pTZ18U Plasmids Probed with a Long-Lifetime Metal-Ligand Complex

  • Kang, Jung-Sook;Abugo, Omoefe O.;Lakowicz, Joseph R.
    • BMB Reports
    • /
    • 제35권4호
    • /
    • pp.389-394
    • /
    • 2002
  • $[Ru(bpy)_2(dppz)]^2+$ (bpy=2,2'-bipyfidine, dppz=dipyrido[3,2-a:2',3'-c]phenazine) (RuBD), a long-lifetime metal-ligand complex, displays favorable photophysical properties. These include long lifetime, polarized emission, but no significant fluorescence from the complex that is not bound to DNA. To show the usefulness of this luminophore (RuBD) for probing the bending and torsional dynamics of nucleic acids, its intensity and anisotropy decays when intercalated into supercoiled and relaxed pTZ18U plasmids were examined using frequency-domain fluorometry with a blue light-emitting diode (LED) as the modulated light source. The mean lifetimes for the supercoiled plasmids (< $\tau$ >=148 ns) were somewhat shorter than those for the relaxed plasmids (< $\tau$ >=160 ns). This suggests that the relaxed plasmids were shielded more efficiently from water. The anisotropy decay data also showed somewhat shorter slow rotational correlation times for supercoiled plasmids (288 ns) than for the relaxed plasmids (355 ns). The presence of two rotational correlation times suggests that RuBD reveals both the bending and torsional motions of the plasmids. These results indicate that RuBD can be useful for studying both the bending and torsional dynamics of mucleic acids.

Dynamics of Supercoiled and Linear pBluescript II SK(+) Phagemids Probed with a Long-lifetime Metal-ligand Complex

  • Kang, Jung-Sook;Son, Byeng-Wha;Choi, Hong-Dae;Yoon, Ji-Hye;Son, Woo-Sung
    • BMB Reports
    • /
    • 제38권1호
    • /
    • pp.104-110
    • /
    • 2005
  • We extended the measurable time scale of DNA dynamics to microsecond using $[Ru(phen)_2(dppz)]^{2+}$ (phen = 1,10-phenanthroline, dppz = dipyrido[3,2-a:2',3'-c]phenazine) (RuPD), which displays a mean lifetime near 500 ns. To evaluate the usefulness of this luminophore (RuPD) for probing nucleic acid dynamics, its intensity and anisotropy decays when intercalated into supercoiled and linear pBluescript (pBS) II SK(+) phagemids were examined using frequency-domain fluorometry with a blue light-emitting diode (LED) as the modulated light source. The mean lifetime for the supercoiled phagemids (< $\tau$ > = 489.7 ns) was somewhat shorter than that for the linear phagemids (< $\tau$ > = 506.4 ns), suggesting a more efficient shielding from water by the linear phagemids. The anisotropy decay data also showed somewhat shorter slow rotational correlation times for supercoiled phagemids (997.2 ns) than for the linear phagemids (1175.6 ns). The slow and fast rotational correlation times appear to be consistent with the bending and torsional motions of the phagemids, respectively. These results indicate that RuPD can have applications in studies of both bending and torsional dynamics of nucleic acids.

An analytical algorithm for assessing dynamic characteristics of a triple-tower double-cable suspension bridge

  • Wen-ming Zhang;Yu-peng Chen;Shi-han Wang;Xiao-fan Lu
    • Structural Engineering and Mechanics
    • /
    • 제90권4호
    • /
    • pp.325-343
    • /
    • 2024
  • Triple-tower double-cable suspension bridges have increased confinement stiffness imposed by the main cable on the middle tower, which has bright application prospects. However, vertical bending and torsional vibrations of the double-cable and the girder are coupled in such bridges due to the hangers. In particular, the bending vibration of the towers in the longitudinal direction and torsional vibrations about the vertical axis influence the vertical bending and torsional vibrations of the stiffening girders, respectively. The conventional analytical algorithm for assessing the dynamic features of the suspension bridge is not directly applicable to this type of bridge. This study attempts to mitigate this problem by introducing an analytical algorithm for solving the triple-tower double-cable suspension bridge's natural frequencies and mode shapes. D'Alembert's principle is employed to construct the differential equations of the vertical bending and torsional vibrations of the stiffening girder continuum in each span. Vibrations of stiffening girders in each span are interrelated via the vibrations of the main cables and the bridge towers. On this basis, the natural frequencies and mode shapes are derived by separating variables. The proposed algorithm is then applied to an engineering example. The natural frequencies and mode shapes of vertical bending and torsional vibrations derived by the analytical algorithm agreed well with calculations via the finite element method. The fundamental frequency of vertical bending and first- and second-order torsion frequencies of double-cable suspension bridges are much higher than those of single-cable suspension bridges. The analytical algorithm has high computational efficiency and calculation accuracy, which can provide a reference for selecting appropriate structural parameters to meet the requirements of dynamics during the preliminary design.

250 kW급 초임계 CO2 발전용 감속기의 유체 윤활 베어링 및 회전체 동역학 특성 해석 (Bearing and Rotordynamic Performance Analysis of a 250 kW Reduction Gear System)

  • 이동현;김병옥
    • Tribology and Lubricants
    • /
    • 제32권4호
    • /
    • pp.107-112
    • /
    • 2016
  • This paper presents a rotordynamic analysis of the reduction gear system applied to the 250 kW super critical CO2 cycle. The reduction gear system consists of an input shaft, intermediate shaft, and output shaft. Because of the high rotating speed of the input shaft, we install tilting pad bearings, rolloer bearings support the intermediate and output shafts. To predict the tilting pad bearing performance, we calculate the applied loads to the tilting pad bearings by considering the reaction forces from the gear. In the rotordynamic analysis, gear mesh stiffness results in a coupling effect between the lateral and torsional vibrations. The predicted Campbell diagram shows that there is not a critical speed lower than the rated speed of 30,000 rpm of the input shaft. The predicted modes on the critical speeds are the combined bending modes of the intermediate and output shaft, and the lateral vibrations dominate when compared to the torsional vibrations. The damped natural frequency does not strongly depend on the rotating speeds, owing to the relatively low rotating speed of the intermediate and output shaft and constant stiffness of the roller bearing. In addition, the logarithmic decrements of all the modes are positive; therefore all modes are stable.

Wire Rope Dynamics 기반의 조선용 탑재 크레인 동역학 시뮬레이션 (Dynamic Simulation of a Shipbuilding Erection Crane based on Wire Rope Dynamics)

  • 차주환;구남국;노명일;이규열
    • 한국전산구조공학회논문집
    • /
    • 제25권2호
    • /
    • pp.119-127
    • /
    • 2012
  • 와이어 로프(wire rope)는 여러 가닥의 얇고 긴 철사를 감아서 밧줄과 같이 만든 것으로 굽힘과 비틀림 하중에 비해 축 하중에 더 크게 저항할 수 있는 특징을 가지고 있다. 해상 크레인, 갠트리 크레인, 크롤러 크레인 등과 같이 선박 또는 해양 구조물의 탑재를 위해 사용되는 조선용 탑재 크레인은 이러한 와이어 로프를 이용해 큰 중량의 블록들을 들거나 내리고 있다. 따라서 블록의 안전한 탑재를 위해서는 와이어 로프에 대한 동역학적 특성을 잘 파악해야 한다. 본 연구에서는 블록 탑재 시 크레인의 와이어 로프에 작용하는 장력과 비틀림 모멘트에 대한 계산식을 유도하고, 이를 기반으로 한 조선용 탑재 크레인의 동역학 시뮬레이션을 수행하였다. 그 결과, 개발된 시뮬레이션 방법이 실제 조선소의 안전한 블록 탑재 과정에 충분히 적용할 수 있음을 확인하였다.

Preliminary Molecular Dymanics Simulation Studies of H-Y Zeolite in a Non-Rigid Zeolite Framework

  • 최상구;이송희
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권4호
    • /
    • pp.445-450
    • /
    • 1999
  • Molecular dynamics (MD) simulation of non-rigid H-Y zeolite framework are performed at 298.15 and 5.0 K. Usual bond stretching, bond angle bending, torsional rotational, and non-bonded Lennard-Jones and electrostatic interactions are considered as intraframework interaction potentials. Calculated atomic parameters are in good agreement with the experiment, which indicates the successful reproduction of the framework structure and its motion. Both calculated bond lengths and bond angles are also in good agreement with the experiment except generally for a little longer bond lengths and a little smaller T-O-H bond angles. The calculated overall site occupation of HI keeps the order O(2) > O(3) > O(4) > O(t) at 298.15 K, which is very different from the experimental prediction, O(l) > O(3) > O(2) at 5 K. Calculated IR spectra of the H-Y zeolite framework show that most of the main peaks of the O-H bonds are in the broad region 3700-5000 cm-1 and that the O-T stretching bands appeared in 0-2000 cm-1 and at 2700 cm-1

GYROSCOPIC EFFECT ON MODE SPLITTING IN ROTATING DISK: HDD SPINDLE SYSTEM VIBRATIONS

  • Lee, Chong-Won
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.43-49
    • /
    • 1997
  • A rotating rigid disk, attached on a flexible shaft or supported by a torsional spring, experiences precessional whirling due to gyroscopic moment loading. It is well known in rotor dynamics area that, as the rotational speed increases, the precessional mode of the rotating rigid disk starts splitting into two: forward and backward precessional modes. On the other hand, it is also well known in disk vibration area that a rotating flexible disk also shows another kind of mode splitting phenomenon due to the rotation, resulting in forward and backward traveling waves. When rotating multiple flexible disks are coupled in vibration with the supporting Flexible shaft, the associated mode splitting should be compatible with the two seemingly different vibration analysis methods. This paper investigates the possibility of fusing the precessional and traveling wave mode splittings so that the bending coupled disk vibrations in HDD spindle systems can be better understood.

  • PDF

조합공진 영역에서 감쇠의 영향을 고려한 비선형 진동 응답 특성 (Nonlinear Oscillation Characteristics in Combination Resonance Region Considering Damping Effects)

  • 정태건
    • 한국소음진동공학회논문집
    • /
    • 제20권9호
    • /
    • pp.849-855
    • /
    • 2010
  • Damping may change the response characteristics of nonlinear oscillations due to the parametric excitation of a thin cantilever beam. When the natural frequencies of the first bending and torsional modes are of the same order of magnitude, we can observe the one-to-one combination resonance in the perturbation analysis depending on the characteristic parameters. The nonlinear behavior about the combination resonance reveals a chaotic motion depending on the natural frequencies and damping ratio. We can analyze the chaotic dynamics by using the eigenvalue analysis of the perturbed components. In this paper, we derived the equations for autonomous system and solved them to obtain the characteristic equation. The stability analysis was carried out by examining the eigenvalues. Numerical integration gave the physical behavior of each mode for given parameters.

Molecular Dynamics Simulation Studies of Zeolite A. Ⅵ. Vibrational Motion of Non-Rigid Zeolite-A Framework

  • 이송희;최상구
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권4호
    • /
    • pp.422-428
    • /
    • 1998
  • In the present paper, we report a molecular dynamics (MD) simulation of non-rigid zeolite-A framework only as the base case for a consistent study of the role of intraframework interaction on several zeolite-A systems using the same technique in our previous studies of rigid zeolite-A frameworks. Usual bond stretching, bond angle bending, torsional rotational, and non-bonded Lennard-Jones and electrostatic interactions are considered as intraframework interaction potentials. The comparison of experimental and calculated structural parameters confirms the validity of our MD simulation for zeolite-A framework. The radial distribution functions of non-rigid zeolite-A framework atoms characterize the vibrational motion of the framework atoms. Mean square displacements are all periodic with a short period of 0.08 ps and a slow change in the amplitude of the vibration with a long period of 0.53 ps. The displacement auto-correlation (DAC) and neighbor-correlation (DNC) functions describe the up-and-down motion of the framework atoms from the center of α-cage and the back-and-forth motion on each ring window from the center of each window. The DAC and DNC functions of the framework atoms from the center of α-cage at the 8-ring windows have the same period of the up-and-down motion, but those functions from the center of 8-ring window at the 8-ring windows are of different periods of the back-and-forth motion.

Molecular Dynamics Simulation of Liquid Alkanes. Ⅰ. Thermodynamics and Structures of Normal Alkanes : n-butane to n-heptadecane

  • 이송희;이홍;박형석;Jayendran C. Rasaiah
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권8호
    • /
    • pp.735-744
    • /
    • 1996
  • We present results of molecular dynamic (MD) simulations for the thermodynamic and structural properties of liquid n-alkanes, from n-butane to n-heptadecane, using three different models Ⅰ-Ⅲ. Two of the three classes of models are collapsed atomic models while the third class is an atomistically detailed model. Model Ⅰ is the original Ryckaert and Bellemans' collapsed atomic model [Discuss. Faraday Soc. 1978, 66, 95] and model Ⅱ is the expanded collapsed model which includes C-C bond stretching and C-C-C bond angle bending potentials in addition to Lennard-Jones and torsional potentials of model Ⅰ. In model Ⅲ all the carbon and hydrogen atoms in the monomeric units are represented explicitly for the alkane molecules. Excellent agreement of the results of our MD simulations of model Ⅰ for n-butane with those of Edberg et al.[J. Chem. Phys. 1986, 84, 6933], who used a different algorithm confirms the validity of our algorithms for MD simulations of model Ⅱ for 14 liquid n-alkanes and of models Ⅰ and Ⅲ for liquid n-butane, n-decane, and n-heptadecane. The thermodynamic and structural properties of models Ⅰ and Ⅱ are very similar to each other and the thermodynamic properties of model Ⅲ for the three n-alkanes are not much different from those of models Ⅰ and Ⅱ. However, the structural properties of model Ⅲ are very different from those of models Ⅰ and Ⅱ as observed by comparing the radial distribution functions, the average end-to-end distances and the root-mean-squared radii of gyrations.