• Title/Summary/Keyword: Bend curvature

Search Result 49, Processing Time 0.021 seconds

Turbulent Flow Field Structure of Initially Asymmetric Jets

  • Kim, Kyung-Hoon;Kim, Bong-Whan;Kim, Suk-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1386-1395
    • /
    • 2000
  • The mear field structure of round turbulent jets with initially asymmetric velocity distributions is investigated experimentally. Experiments are carried out using a constant temperature hot-wire anemometry system to measure streamwise velocity in the jets. The measurements are undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distributions of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stresses. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend upstream of the exit. There pipes used here include a straight pipe, and 90 and 160 degree-bend pipes. Therefore, at the upstream of the upstream of the pipe exit, secondary flow through the bend mean streamwise velocity distribution could be controlled by changing the curvature of pipes. The jets into the atmosphere have two levels of initial velocity skewness in addition to an axisymmetric jet from a straight pipe. In case of the curved pipe, a six diameter-long straight pipe section follows the bend upstream of the exit. The Reynolds number based on the exit bulk velocity is 13,400. The results indicate that the near field structure is considerably modified by the skewness of an initial mean velocity distribution. As the skewness increases, the decay rate of mean velocity at the centerline also increases.

  • PDF

Characteristics of Sediment and Flow with Channel Patterns in Alluvial Rivers (충적하천(沖積河川)의 수로양상(水路樣相)에 따른 유사(流砂) 및 흐름특성(特性))

  • Lee, Jong Seok;Lee, Dae Cheol;Pai, Dong Man;Cha, Young Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1177-1189
    • /
    • 1994
  • This paper aims to develop the numerical model for prediction of the channel migration by analyzing of sediment and flow characteristics with patterns of channel in alluvial rivers. Flow in rivers constitutes to be the meandering or the braided form and rarely straight channel through morphologically stable patterns with mutual actions between the flowing water and bed materials. In order to develop the model for simulation of the channel migration, the channels are divided into two types with positive or negative sign by the direction of curvature radius of the centerline channel ($r_c$). That is, the single bend-channel consists of only one curvature of positive or negative sign and the multi-bend channel consists of two more curvatures of positive or negative sign, respectively. The model analyzes the sediment and flow characteristics under the influence of superelevation, spiral motion, irregularity in bed topography and depth-averaged velocity of channels. For reliability of this model, the single bend-channel and the multi bend channel are compared with experiment data in other models and the measured field data in the Keum-River, respectively. As a result, the both com parisians turn out to be excellent.

  • PDF

An Investigation of Heat Transfer Characteristics of Swirling Flow in a 180$^{\circ}$ Circular Section Bend with Uniform Heat Flux

  • Chang, Tae-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1520-1532
    • /
    • 2003
  • An experiment was performed to obtain the local heat transfer coefficient and Nusselt number in a circular duct with a 180$^{\circ}$ bend for Re=6 x 10$^4$, 8 x 10$^4$ and 1 x 10$\^$5/ under swirling flow and non-swirling flow conditions. The test tube with a circular section was made from stainless steel having a curvature ration of 9.4. Current heat flux of 5.11 kW/㎡ was applied to the test tube by electrical power and the swirling motion of air was produced by a tangential inlet to the pipe axis at 180$^{\circ}$. Measurements of local wall temperatures and the bulk mean temperatures of air were made at four circumferential positions at 16 stations. The wall temperatures showed a reduced distribution curve at the bend for the non-swirling flow, but this effect did not appear for the swirling flow. The Nusselt number distributions for the swirling flow, which was calculated from the measured wall and the bulk temperatures, were higher than that of the non-swirling flow. The average Nusselt number of the swirling flow increased by about 90-100%, compared to that of the non-swirling flow. The Nu/Nu$\_$DB/ values at the 90$^{\circ}$ station for non-swirling flow and swirling flow were approximately 2.5 and 4.8 at Re=6x10$^4$ respectively. The values agree well with Said's results for non-swirling flow.

Effect of Internal Pressure on Plastic Limit Loads for Elbows with Circumferential Through-wall Crack under Closing Bending Incorporating Large Geometry Change Effects (대변형 효과를 고려한 원주방향 관통균열 엘보우의 닫힘굽힘 한계하중에 미치는 내압 영향 평가)

  • Hong, Seok-Pyo;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1778-1782
    • /
    • 2007
  • Based on three-dimensional (3-D) FE limit analyses, this paper estimates effect of internal pressure on plastic limit loads for elbows with circumferential through-wall crack under in-plane bending incorporating large geometry change effects. Circumferential through-wall crack in extrados is considered. The FE limit analyses using the large geometry change option provide plastic collapse loads (using the twice-elastic-slope method). For the bending mode, closing bending is considered. Other relevant variables affecting plastic limit loads are systematically varied, related to pipe bend geometry (the mean radius, thickness and bend curvature) and defect geometry (the length of circumferential through-wall crack).

  • PDF

Numerical Analysis of Turbulent Flow and Heat Transfer in a Rectangular Duct with a 180° Bend Degree (직사각단면을 갖는 180°곡관내의 난류 유동및 열전달에 관한 수치해석적 연구)

  • Choi, Y.D.;Moon, C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.325-336
    • /
    • 1994
  • A numerical simulation of velocity and temperature fields and Nusselt number distributions is performed by using the algebraic stress model (ASM) for the velocity profiles and low Reynolds number ${\kappa}-{\varepsilon}$ model and the algebraic heat flux model(AHFM) for turbulent heat transfer in a $180^{\circ}$ bend with a constant wall heat flux. In the low Reynolds number ${\kappa}-{\varepsilon}$ model, turbulent Prandtl number is modified by considering the streamline curvature effect and the non-equilibrium effect between turbulent kinetic energy production and dissipation rate. Every heat flux term presented in the transport equation of turbulent heat flux is reduced to algebraic expressions in a way similar to algebraic stress model. Also. in the wall region, low Reynods number algebraic heat flux model(AHFM) is applied.

  • PDF

The Near Field Structure of Initially Asymmetic Jets (비대칭분류의 노즐출구영역에서의 난류유동장 해석)

  • Kim, K.H.;Shin, J.K.;Lee, H.Y.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.38-45
    • /
    • 1999
  • The near field structure of round turbulent jets with initially asymmetric velocity distribution is investigated experimentally. Experiments were carried out using a constant temperature hot-wire anemometry system to measure streamwise velocity in the jets. The measurements were undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distribution of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stress. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend at the upstream of the exit. Three pipes were used for this study: A straight pipe, 90 and 160 degree-bended pipes. Therefore, at the upstream of the pipe exit, the secondary flow through the bend and the mean streamwise velocity distribution could be controlled by changing the curvature of pipes.

  • PDF

A PHOTOELASTIC STUDY ON THE INITIAL STRESS DISTRIBUTION OF 3 TYPES TMA MULTI-VERTICAL LOOP ARCH WIRE (TMA wire로 제작된 3종류의 MVLAW(Multi-Vertical Loop Arch Wire)의 초기응력분포에 관한 광탄성학적 연구)

  • Lee, Hyeong-Chul;Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.25 no.1 s.48
    • /
    • pp.73-85
    • /
    • 1995
  • Multi-Vertical Loop Arch Wire(MVLAW) is a kind of appliance for uprighting the mesially inclined posterior teeth axes simultaneously. In this study MVLAW was classified as 3 types by modifing the vertical loop design and named type A, B and C. Each MVLAW was fabricated from .017'x.025' TMA wire and preactivated at the distal end of the open vertical loop with 10 degree tip-back bend(type B has an electric welding stop at the distal end of each loop and type C has no electric welding stop). Type A MVLAW was preactivated at the apex of each open vertical loop with 10 degree tip-back bend(the electric welding stop of type A is positionod at the mesial side of each loop). The aim of the present study was to identify when and which MVLAW is more effective to correct the buccal segment axes simultaneously. The Photoelastic overview of the upper and lower right quadrant showed that stress concentrations were observed in its photoelastic model. The obtained results were as follows : 1. Higher level compression can be seen clearly at the distal curvature of the lower 1st and 2nd molar when A type MVLAW was applied without short class m elastic, but mild compression cannot be seen at the distal curvature of lower anterior teeth using the class m elastic. 2. Higher concentration was presented at the mesial curvature from the lower 1st premolar to the 2nd molar than the anterior teeth when B type MVLAW without short class III elastic was applied, but using the short class III elastic, higher concentration of compression was presented in the anterior teeth area. 3. Areas of higher compression and tension were not observed at the mesial and distal curvature of the entire 1ower teeth except lower central and lateral incisors in C type MVLAW without short class III elastic, but using the short class III elastic, higher concentration was seen at the mesial curvature of the lower 1st premolar and 1ower anterior teeth.

  • PDF

A Study on Selected Transverse Bed Slope Models in Channel Bend (유로만곡부의 횡방향 하상경사 산정 모형에 관한 연구)

  • Song, Jai Woo;Choi, In Ho;Kim, Ji Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1395-1404
    • /
    • 1994
  • Transverse bed slope in bend is a subject of scientific investigation since it provides the necessary information for channel design and protection of hydraulic structures (bank, bridge, etc), and study of river morphology. In this paper, selected models were examined and compared for the value of prediction of the transverse bed slope in curved alluvial channels(project area), by using field data, and fitting model was proposed. All models that related the local transverse bed slope to mean flow characteristics were alike in the sense that they predicted the local transverse bed slope to be proportional to the ratio between depth and radius of curvature. The difference among the models was related with the factor of proportionality, K. Also, measured transverse bed slope was correlated to mean velocity, maximum depth, and density Froude number in channel bend. In this paper selected models were compared for the prediction of the transverse bed slope using Odgaard's experiment (obtained in Sacramento River bend), so Odgaard89 model was closely related with real transverse bed slope.

  • PDF

Characteristics of Eddy Current Signals of Axial Notches in Steam Generator U-bend Tubes using Rotating Pancake Coils (회전코일 와전류신호를 이용한 증기발생기 곡관형 튜브의 축방향노치 신호의 특성)

  • Kim, Chang-Soo;Moon, Yong-Sig
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.3
    • /
    • pp.7-12
    • /
    • 2012
  • Steam generator tubes are critical boundary of the primary and secondary side in nuclear power plants. Eddy current testing is commonly used as the method of non-destructive testing for the safety and integrity of steam generator tubes in the nuclear power plants. Changes in the geometric shape act as a stress concentration factor likely to cause a defect during the steam generator operation. The mixed-signals with the geometric shape are distorted and attributes that are difficult to detect signals. An example is bending stress due to compression process at a U-bend occurring in the intrados region which has a small radius of curvature. The resulting change in the geometric shape may lead to a dent like occurrences. The dent can cause stress concentration and generates stress corrosion cracks. In this study, the steam generator tubes of nuclear power plant were selected to study for analysis of mixed-signal containing dent and stress corrosion cracks.

Characteristics of Channel Bend Reach and Shape of Cross-Section (유로 만곡부 특성과 단면현상)

  • Song, Jai Woo;Park, Young Jin;Lee, Yong Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1191-1197
    • /
    • 1994
  • The purpose of this study is to examine morphometric characteristics in a channel bend reach. The new shape factor is suggested that channel deformation rate of cross section (${\Delta}A_s$) showed the variation of concentrated location of force due to the current and the variation of erosional section in alluvial channel. In the downstream direction the meaning of decreasing "${\Delta}A_s$" is the stability of channel bed. This study was analyzed morphological characteristics of cross section-width of channel ($W_s$), width to the thalweg ($W_{th}$), maximum depth ($D_{th}$)-on the Guem River, and typical cross sections in channel bend were proposed. The channel migration rate (M) for the study river was represented that the zones of curvature ratio (R/W) with 2~4 were larger 12% than other zones.

  • PDF