• Title/Summary/Keyword: Benchmark system

Search Result 644, Processing Time 0.027 seconds

Improvement and verification of the DeCART code for HTGR core physics analysis

  • Cho, Jin Young;Han, Tae Young;Park, Ho Jin;Hong, Ser Gi;Lee, Hyun Chul
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.13-30
    • /
    • 2019
  • This paper presents the recent improvements in the DeCART code for HTGR analysis. A new 190-group DeCART cross-section library based on ENDF/B-VII.0 was generated using the KAERI library processing system for HTGR. Two methods for the eigen-mode adjoint flux calculation were implemented. An azimuthal angle discretization method based on the Gaussian quadrature was implemented to reduce the error from the azimuthal angle discretization. A two-level parallelization using MPI and OpenMP was adopted for massive parallel computations. A quadratic depletion solver was implemented to reduce the error involved in the Gd depletion. A module to generate equivalent group constants was implemented for the nodal codes. The capabilities of the DeCART code were improved for geometry handling including an approximate treatment of a cylindrical outer boundary, an explicit border model, the R-G-B checker-board model, and a super-cell model for a hexagonal geometry. The newly improved and implemented functionalities were verified against various numerical benchmarks such as OECD/MHTGR-350 benchmark phase III problems, two-dimensional high temperature gas cooled reactor benchmark problems derived from the MHTGR-350 reference design, and numerical benchmark problems based on the compact nuclear power source experiment by comparing the DeCART solutions with the Monte-Carlo reference solutions obtained using the McCARD code.

Analysis of Small Signal Stability for SSR on Generator Loading Condition (계통 운전조건에 따른 축 비틀림 전동 미소신호안정도 해석)

  • Kim, D.J.;Moon, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.85-87
    • /
    • 2002
  • The paper describes the formulation of state matrix equations from the linearized multi-machine power system including network dynamics and the application of IEEE First Benchmark Model. The eigenvalues of IEEE First Benchmark Model are investigated not only by changing the compensation of series capacitance at no-load conditions, but also by varying the generator loading at fixed compensation of capacitance. In addition, the pure electrical self-excited mode is also examined by an eigen analysis and time domain simulation.

  • PDF

Eigenvalue analysis of IEEE SSR Benchmark System and Its Time-Domain Validation (IEEE SSR 벤치마크 시스템 고유치 해석과 시간영역 검증)

  • Kim, D.J.;Moon, Y.H.;Song, C.K.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.446-448
    • /
    • 2007
  • This paper presents the high frequency (HF) eigenvalue results against IEEE SSR First Benchmark Mode and validation using the simultaneous time-domain simulation program, PSCAD/EMTDC. Two results show a little difference but not much. Particularly, HF eigenvalue analysis results tends to give more conservative results compared to those of the exact time-domain simulation.

  • PDF

Statistical approach to a SHM benchmark problem

  • Casciati, Sara
    • Smart Structures and Systems
    • /
    • v.6 no.1
    • /
    • pp.17-27
    • /
    • 2010
  • The approach to damage detection and localization adopted in this paper is based on a statistical comparison of models built from the response time histories collected at different stages during the structure lifetime. Some of these time histories are known to have been recorded when the structural system was undamaged. The consistency of the models associated to two different stages, both undamaged, is first recognized. By contrast, the method detects the discrepancies between the models from measurements collected for a damaged situation and for the undamaged reference situation. The damage detection and localization is pursued by a comparison of the SSE (sum of the squared errors) histograms. The validity of the proposed approach is tested by applying it to the analytical benchmark problem developed by the ASCE Task Group on Structural Health Monitoring (SHM). In the paper, the results of the benchmark studies are presented and the performance of the method is discussed.

Benchmark for Deep Learning based Visual Odometry and Monocular Depth Estimation (딥러닝 기반 영상 주행기록계와 단안 깊이 추정 및 기술을 위한 벤치마크)

  • Choi, Hyukdoo
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.114-121
    • /
    • 2019
  • This paper presents a new benchmark system for visual odometry (VO) and monocular depth estimation (MDE). As deep learning has become a key technology in computer vision, many researchers are trying to apply deep learning to VO and MDE. Just a couple of years ago, they were independently studied in a supervised way, but now they are coupled and trained together in an unsupervised way. However, before designing fancy models and losses, we have to customize datasets to use them for training and testing. After training, the model has to be compared with the existing models, which is also a huge burden. The benchmark provides input dataset ready-to-use for VO and MDE research in 'tfrecords' format and output dataset that includes model checkpoints and inference results of the existing models. It also provides various tools for data formatting, training, and evaluation. In the experiments, the exsiting models were evaluated to verify their performances presented in the corresponding papers and we found that the evaluation result is inferior to the presented performances.

Design and Implementation of I/O Performance Benchmarking Framework for Linux Container

  • Oh, Gijun;Son, Suho;Yang, Junseok;Ahn, Sungyong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.180-186
    • /
    • 2021
  • In cloud computing service it is important to share the system resource among multiple instances according to user requirements. In particular, the issue of efficiently distributing I/O resources across multiple instances is paid attention due to the rise of emerging data-centric technologies such as big data and deep learning. However, it is difficult to evaluate the I/O resource distribution of a Linux container, which is one of the core technologies of cloud computing, since conventional I/O benchmarks does not support features related to container management. In this paper, we propose a new I/O performance benchmarking framework that can easily evaluate the resource distribution of Linux containers using existing I/O benchmarks by supporting container-related features and integrated user interface. According to the performance evaluation result with trace-replay benchmark, the proposed benchmark framework has induced negligible performance overhead while providing convenience in evaluating the I/O performance of multiple Linux containers.

HPC(High Performance Computer) Linux Clustering for UltraSPARC(64bit-RISC processor) (UltraSPARC(64bit-RISC processor)을 위한 고성능 컴퓨터 리눅스 클러스터링)

  • 김기영;조영록;장종권
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.45-48
    • /
    • 2003
  • We can easily buy network system for high performance micro-processor, progress computer architecture is caused of high bandwidth and low delay time. Coupling PC-based commodity technology with distributed computing methodologies provides an important advance in the development of single-user dedicated systems. Lately Network is joined PC or workstation by computers of high performance and low cost. Than it make intensive that Cluster system is resembled supercomputer. Unix, Linux, BSD, NT(Windows series) can use Cluster system OS(operating system). I'm chosen linux gain low cost, high performance and open technical documentation. This paper is benchmark performance of Beowulf clustering by UltraSPARC-1K(64bit-RISC processor). Benchmark tools use MPI(Message Passing Interface) and NetPIPE. Beowulf is a class of experimental parallel workstations developed to evaluate and characterize the design space of this new operating point in price-performance.

  • PDF

Seismic Protection of Cable-stayed Bridges Using LRB and MR Damper (납-고무받침과 자기유변유체 감쇠기를 이용한 사장교의 내진제어)

  • 정형조;박규식;이인원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.241-245
    • /
    • 2003
  • This paper presents the LRB-based hybrid base isolation system employing additional semiactive control devices for seismic protection of cable-stayed bridges by examining the ASCE first generation benchmark problem for a cable-stayed bridge. In this study, ideal magnetorheological dampers (MRDs) are considered as additional semiactive control devices. Numerical simulation results show that the hybrid base isolation system is effective in reducing the structural responses of the benchmark cable-stayed bridge under the historical earthquakes considered. The simulation results also demonstrate that the hybrid base Isolation system employing semiactive MRDs is robust to the stiffness uncertainty of the structure. Therefore, the LRB-based hybrid base isolation system employing MRDs could be appropriate in real applications for full-scale civil infrastructures.

  • PDF

Database System Parameter Toning in the TPC-W Benchmark (TPC-W 성능 평가에서의 데이타베이스 시스템 성능 인자 튜닝)

  • 류문수;정회진;이상호
    • Journal of KIISE:Databases
    • /
    • v.31 no.4
    • /
    • pp.373-383
    • /
    • 2004
  • There have been an emerging interests in the importance of database tuning techniques under modem database environments in which very large-scale data should be managed. In Particular. database performance parameters should be tuned to reflect system loads appropriately. This paper presents two parameter tuning strategies, namely throughput-based and response-time-based, which tune each performance parameter accordingly. The proposed techniques are applied to two commercial database systems in the TPC-W benchmark to see the effectiveness of those methods. The results show that they can help improve system performance considerably.

Response spectrum analysis considering non-classical damping in the base-isolated benchmark building

  • Chen, Huating;Tan, Ping;Ma, Haitao;Zhou, Fulin
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.473-485
    • /
    • 2017
  • An isolated building, composed of superstructure and isolation system which have very different damping properties, is typically non-classical damping system. This results in inapplicability of traditional response spectrum method for isolated buildings. A multidimensional response spectrum method based on complex mode superposition is herein introduced, which properly takes into account the non-classical damping feature in the structure and a new method is developed to estimate velocity spectra from the commonly used displacement or pseudo-acceleration spectra based on random vibration theory. The error of forced decoupling method, an approximated approach, is discussed in the viewpoint of energy transfer. From the base-isolated benchmark model, as a numerical example, application of the procedure is illustrated companying with comparison study of time-history method, forced decoupling method and the proposed method. The results show that the proposed method is valid, while forced decoupling approach can't reflect the characteristics of isolated buildings and may lead to insecurity of structures.