• 제목/요약/키워드: Beltrami surface

검색결과 2건 처리시간 0.015초

ON GENERALIZED ROTATIONAL SURFACES IN EUCLIDEAN SPACES

  • Arslan, Kadri;Bulca, Betul;Kosova, Didem
    • 대한수학회지
    • /
    • 제54권3호
    • /
    • pp.999-1013
    • /
    • 2017
  • In the present study we consider the generalized rotational surfaces in Euclidean spaces. Firstly, we consider generalized tractrices in Euclidean (n + 1)-space $\mathbb{E}^{n+1}$. Further, we introduce some kind of generalized rotational surfaces in Euclidean spaces $\mathbb{E}^3$ and $\mathbb{E}^4$, respectively. We have also obtained some basic properties of generalized rotational surfaces in $\mathbb{E}^4$ and some results of their curvatures. Finally, we give some examples of generalized Beltrami surfaces in $\mathbb{E}^3$ and $\mathbb{E}^4$, respectively.

A novel method for solving structural problems: Elastoplastic analysis of a pressurized thick heterogeneous sphere

  • Abbas Heydari
    • Advances in Computational Design
    • /
    • 제9권1호
    • /
    • pp.39-52
    • /
    • 2024
  • If the governing differential equation arising from engineering problems is treated as an analytic, continuous and derivable function, it can be expanded by one point as a series of finite numbers. For the function to be zero for each value of its domain, the coefficients of each term of the same power must be zero. This results in a recursive relationship which, after applying the natural conditions or the boundary conditions, makes it possible to obtain the values of the derivatives of the function with acceptable accuracy. The elastoplastic analysis of an inhomogeneous thick sphere of metallic materials with linear variation of the modulus of elasticity, yield stress and Poisson's ratio as a function of radius subjected to internal pressure is presented. The Beltrami-Michell equation is established by combining equilibrium, compatibility and constitutive equations. Assuming axisymmetric conditions, the spherical coordinate parameters can be used as principal stress axes. Since there is no analytical solution, the natural boundary conditions are applied and the governing equations are solved using a proposed new method. The maximum effective stress of the von Mises yield criterion occurs at the inner surface; therefore, the negative sign of the linear yield stress gradation parameter should be considered to calculate the optimal yield pressure. The numerical examples are performed and the plots of the numerical results are presented. The validation of the numerical results is observed by modeling the elastoplastic heterogeneous thick sphere as a pressurized multilayer composite reservoir in Abaqus software. The subroutine USDFLD was additionally written to model the continuous gradation of the material.