• Title/Summary/Keyword: Belt drive system

Search Result 37, Processing Time 0.022 seconds

The Displacement Control of a Belt Drive System using LQ Servo Controller (LQ 서보제어기를 이용한 벨트구동 시스템의 변위제어)

  • Kwon Se-Hyun
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.3
    • /
    • pp.155-162
    • /
    • 2006
  • Because of their lower cost, higher speed, and longer travel, a belt drive system are quite desirable over screw driven system. However, a belt drive system are inherently difficult to control due to belt flexibility, friction, vibration, backlash and other non-linearities. This thesis presents servo control algorithm and the designing method of controller appliable to a belt drive system. In this paper, a LQ servo controller for a belt drive system is proposed to accomplish an optimal design of improved control system. In this scheme a mathematical model for the control system is obtained in state space form. Finally, the effectiveness of the proposed servo controller was verified through the computer simulation results.

  • PDF

Dynamic Analysis of Automotive Belt Drive Systems (자동차 동력전달용 일체 벨트구동계의 동특성 해석)

  • 오석일;송재수;김성원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.109-120
    • /
    • 1996
  • Serpentine belt drive system offers the advantages of light weigh, low cost, quientness, and efficiency. Since these belts are typically longer than conventional belts, a tensioner component is added to maintain acceptable belt tension levels and make no slippage between pulleys and belts. This paper addresses the modeling and analysis of the automotive belt drive systems and also addresses the predicton of slippage on rotational modes. Vibration characteristics are determined from the eigenvalue problem governing the free response. Under certain engine operating conditions, the dynamic tension fluctuations may be sufficient to cause the belt to slip on particular accessory pulleys, It is found that this slippage can be reduced by adding the tensioner component from the analysis of belt tension and belt compression.

  • PDF

Analysis of OHC drive timing belt system behavior for fixed and automatic tensioner (고정 및 자동장력식 텐셔너에 대한 OHC 구동 타이밍 벨트 시스템의 거동해석)

  • 김현수;이인환;여창기
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.79-89
    • /
    • 1992
  • The behavior of belt tension in OHC drive timing belt system was investigated analytically and experimentally for (1)fixed and (2)automatic tensioner. From the numerical results it was found that the automatic tensioner makes the belt tension larger than those of the fixed tensioner. When the initial belt tension decreased due to the belt elongation, the belt tension of the fixed tensioner could decrease to near zero while the belt tension for the automatic tensioner maintained above zero by the tensioner spring. The mean valve and the difference between the maximum and the minimum belt tension for the automatic tensioner increased compared with those of the fixed tensioner. Also, the numerical results for a hydraulic tensioner showed that the hydraulic tensioner has the good parts of both tensioners; i.e., thesmaller amplitude in belt tension and the higher mean tension. Experimental results for the automatic and fixed tensioner of the OHC timing belt system were in agreement with the theoretical results.

  • PDF

Dynamic analysis on belt-drive system of machine tools (공작 기계 벨트 구동계의 동적 해석)

  • Kim, S.G.;Lee, S.Y.;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.104-111
    • /
    • 1995
  • The needs of ultraprecision machine tools, which manufacture and machine the high precision parts used in computers, semiconductors and othe rprecise machines, have been increased recentrly. So it is important to design the driving parts of the ultraprecision machine tools which affect significantly on the performance of them. In this paper, the dynamic analyses on the belt-drive system were studied. The correlational equations between the acoustic natural frequency and the tension of belt were derived by experiments. The dynamic delections while the dynamic loads on the motor system changed were analyzed by the finite element analysis. The nonlinear characteristics of the bearings on the dynamic performance was studied and the belt connecting the motor to the spindle of a machine tool was modeled by the truss element and the beam element.

  • PDF

Modeling of a Timing-Belt Drive System Used in a Large-Scale Panel-Handling Robot (대형 패널 이송 로봇에 사용되는 타이밍벨트 구동계의 모델링)

  • Jo, Eunim;Rhim, Sungsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.915-921
    • /
    • 2013
  • Most of large scale solar panel handling robots adopt the timing-belt drive system for its driveline because of the simplicity and the easiness of implementation. The vibration caused by the flexure of the timing belt would increase as the size and the weight of the panel that the robot handles increase and the vibration would deteriorate the precision and/or productivity of the whole robot system. For the development of a proper control system and for the improvement of the design of the robot it is important to estimate the oscillatory response of the robot system including the flexible drive system properly. In this paper a flexible multi-body dynamics model of a large-scale solar-panel-handling robot with the flexible timing-belt drive system is developed using a generic multi-body dynamics analysis program, RecurDyn.

Analysis of Transmission Error for Stepping Motor Drive Timing Belt System (스테핑 모터 구동 타이밍벨트 시스템의 전동오차 해석)

  • Kim, Hyun-Soo;Wee, Hyuk
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.649-657
    • /
    • 1992
  • Transmission error for a stepping motor-timing belt drive system is investigated experimentally and analytically. From FFT analysis of the experimental results, it is found that the transmission error consists of three periodic errors : (1) error by the stepping motor per one resolution angle theta.$_{m}$, (2) error by the pulley eccentricity per one revolution theta.$_{e}$, and (3) error by the meshing effect between the belt and the pulley teeth per one pitch revoltion theta.$_{p}$. In order to investigate the effects of some design parameters on the transmission error, the dynamic models of the stepping motor-timing belt drive system are derived by Bondgraph. According to the simulation results, as the belt total tension increases, theta.$_{m}$ and theta.$_{e}$ decrease due to the nonlinearity of the belt. In adition, the numerical and experimental results show that theta.$_{m}$ and theta.$_{e}$ of the loaded case are larger than those of the unloaded case. The analytical results are in good accordance with the experimental results.sults.s.sults.

An integrated development methodology of low noise accessory drive system in internal combustion engines (내연기관의 저소음 보기류구동 시스템을 위한 통합 개발 방법론)

  • Park, Keychun;Kong, Jinhyung;Lee, Byunghyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.183-191
    • /
    • 2016
  • A systematic development process for the low noise FEAD (Front End Accessory Drive) system is presented by combining CAE (Computer Aided Engineering) and the experimental rig test. In the estimation of the belt drive noise, two main difficulties arise from the high non-linearity due to the stick-slip contacts on the interfaces of the belt and pulleys, and the interaction of the belt drive system with the powertrain rotational parts. In this work, a recently developed analysis method of the belt drive has been employed considering powertrain rotational dynamics. As results, it shows good correlation with the vehicle tests in various operational modes. The established model has been employed to validate the new design improving the stick-slip noise of the problematic FEAD system. Furthermore, the best proposal of FEAD system in terms of functionality [NVH (Noise, Vibration and Harshness), fuel economy, cost. etc.] has been suggested in the concept design stage of new engine through this presented methodology.

Application to Real Time Repetitive Control in Belt Drive Systems (벨트 구동 시스템에서의 실시간 반복제어 응용)

  • 유영순
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.420-426
    • /
    • 1998
  • It is the purpose of this paper to make a preliminary study on the use of repetitive control to improve velocity accuracy by eliminating repetitive disturbances caused by machining inaccuracies of the axis of rotation location. If the control system can be intelligent enough to compensate for such machining errors, then one may be able to improve the accuracy of the velocity control, or alternatively, one may maintain the same accuracy and relax the machining tolerances required. This could decrease cost significantly. Experiments are performed testing repetitive control methods on a constant speed rolling operation testbed. The experimental results show very substantial decreases in the tracking error of the system. Spectral data of the output motion are given to demonstrate the attenuation of the disturbance frequencies and harmonics, related to the bandwidth being used. It is seen that the simplest form of repetitive control which is very easily implemented, can produce striking improvement in control system performance in such belt drive rolling operations, and the learning can be accomplished in a short time.

  • PDF

A PMSM Driven Electric Scooter System with a V-Belt Continuously Variable Transmission Using a Novel Hybrid Modified Recurrent Legendre Neural Network Control

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1008-1027
    • /
    • 2014
  • An electric scooter with a V-belt continuously variable transmission (CVT) driven by a permanent magnet synchronous motor (PMSM) has a lot of nonlinear and time-varying characteristics, and accurate dynamic models are difficult to establish for linear controller designs. A PMSM servo-drive electric scooter controlled by a novel hybrid modified recurrent Legendre neural network (NN) control system is proposed to solve difficulties of linear controllers under the occurrence of nonlinear load disturbances and parameters variations. Firstly, the system structure of a V-belt CVT driven electric scooter using a PMSM servo drive is established. Secondly, the novel hybrid modified recurrent Legendre NN control system, which consists of an inspector control, a modified recurrent Legendre NN control with an adaptation law, and a recouped control with an estimation law, is proposed to improve its performance. Moreover, the on-line parameter tuning method of the modified recurrent Legendre NN is derived according to the Lyapunov stability theorem and the gradient descent method. Furthermore, two optimal learning rates for the modified recurrent Legendre NN are derived to speed up the parameter convergence. Finally, comparative studies are carried out to show the effectiveness of the proposed control scheme through experimental results.

타이밍 벨트구동에서 불완전 맞물림 이의 하중분포 해석

  • 김현수;여창기;이인환
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.54-63
    • /
    • 1992
  • Force distribution of incomplete meshing teeth for the OHC drive timing belt system is investigated analytically. Finite difference equations of the belt tension are derived based on the force equilibrium and the deformation of the belt tooth. From the numerical results, it is found that of the force distribution prior to the boundary point shows higher values compared with those of the complete meshing state and the force distribution after the boundary point shows lower values. Also, the magnitude of the incomplete meshing region increases as the rotational speed increases and the tight side belt tension decreases.

  • PDF