• Title/Summary/Keyword: Below-ground colony

Search Result 2, Processing Time 0.022 seconds

Soil Water Monitoring in Below-Ground Ectomycorrhizal Colony of Tricholoma Matsutake

  • Koo, Chang-Duck;Kim, Je-Su;Lee, Sang-Hee;Park, Jae-In;Kwang- Tae Ahn
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.129-133
    • /
    • 2003
  • Water is critically important for Tricholoma matsutake(Tm) growth because it is the major component of the mushroom by over 90%. The mushroom absorbs water through the below ground hyphal colony. Therefore, the objectives of our study were to investigate spatio-temporal water changes in Tm colonies. This study was carried out at Tm fruiting sites in Sogni Mt National Park, where the below-ground mushroom colonies have been irrigated. To identify spatial water status within the Tm soil colony soil moisture and ergosterol content were measured at six positions including a mushroom fruiting position on the line of the colony radius. To investigate temporal soil moisture changes in the soil colony, Time Domain Reflectometry(TDR) sensors were established at the non-colony and colony front edge, and water data were recorded with CR10X data logger from late August to late October. Before irrigation, whereas it was 12.8% at non-colony, the soil water content within Tm colony was 8.0% at 0-5cm from the colony front edge, 6.2% at 10-15cm and 6.5-7.5% at 20-40cm. And the content was 12.1% at 80cm distance from the colony edge, which is similar to that at the non-colony. In contrast, ergosterol content which is proportional to the live hyphal biomass was only 0.4${\mu}g$/g fresh soil at the uncolonized soil, while 4.9 $\mu\textrm{g}$/g fresh soil at the front edge where the hyphae actively grow, and 3.8 ${\mu}g$/g fresh soil at the fruiting position, l.1${\mu}g$/g at 20cm distance and 0.4${\mu}g$/g in the 40cm rear area. Generally, in the Tm fungal colony the water content changes were reversed to the ergosterol content changes. While the site was watered during August to October, the soil water contents were 13.5∼23.0% within the fungal colony, whereas it was 14.5∼26.0% at the non-colony. That is, soil water content in the colony was lower by 1.0∼3.0% than that in the non-colonized soil. Our results show that Tm colony consumes more soil water than other parts. Especially the front 30cm within the hyphal colony parts is more critical for soil water absorption.

  • PDF

Genet Variation of Ectomycorrhizal Suillus granulatus Fruiting Bodies in Pinus strobus Stands

  • Lee, Hwa-Yong;Koo, Chang-Duck
    • Mycobiology
    • /
    • v.44 no.1
    • /
    • pp.7-13
    • /
    • 2016
  • The genets of Suillus granulatus in a Pinus strobus stand ($13m{\times}60m$) were identified using random amplified polymorphic DNA molecular markers and the DNA of mushrooms that fruited for two years, and variations in genet size and distribution were analyzed. From a total of 116 mushrooms, 73 genets were identified and were grouped into three locations. The genets of mushrooms in close proximity differed from each other. The genet sizes varied at any of the three locations. The lengths of the identified genets in the pine stand ranged from 0.09 to 2.90 m. The average number of mushrooms per genet was 1.2 to 2.3, and the percentage of genets that were represented by a single mushroom was 44% to 94%. This variation in the genets of mushrooms in close proximity suggests that the ectomycorrhizal mycelial bodies of S. granulatus propagated sexually by fusing haploid spores derived from the mushrooms gills with below-ground mycelia. Therefore, it is necessary further to investigate the formation of new genets through spores in ectomycorrhizal fungal colonies.