• Title/Summary/Keyword: Bell numbers modulo a prime

Search Result 1, Processing Time 0.016 seconds

ABOUT THE PERIOD OF BELL NUMBERS MODULO A PRIME

  • Car, Mireille;Gallardo, Luis H.;Rahavandrainy, Olivier;Vaserstein, Leonid N.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.143-155
    • /
    • 2008
  • Let p be a prime number. It is known that the order o(r) of a root r of the irreducible polynomial $x^p-x-l$ over $\mathbb{F}_p$ divides $g(p)=\frac{p^p-1}{p-1}$. Samuel Wagstaff recently conjectured that o(r) = g(p) for any prime p. The main object of the paper is to give some subsets S of {1,...,g(p)} that do not contain o(r).