• Title/Summary/Keyword: Behavior-response performance

Search Result 691, Processing Time 0.042 seconds

A Study on Response Analysis of 6-DOF Pneumatic Vibration Isolation Table Loaded by Transient Movements of Carriage on It (상판 위 질량의 순간적인 움직임에 의해 가진되는 6-자유도 공압제진대의 진동 응답에 대한 연구)

  • Sun, Jong-Oh;Shin, Yun-Ho;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.515-523
    • /
    • 2007
  • As environmental vibration requirements on precision equipments get more stringent, use of pneumatic vibration isolators becomes more crucial and, hence, their dynamic performance needs to be further improved. Dynamic behavior of those pneumatic vibration Isolation tables is very important to both manufacturer and customer as performance specifications. Together with conventional transmissibility, transient response characteristics are another critical performance index especially when movements of components, e.g., x-y tables, of the precision equipments are very dynamic. In this paper, analysis on transient response of a pneumatic vibration isolation table loaded by a mass moving on it is presented. This is a conventional dynamics problem on a rigid body with 6 degree of freedom and a mass with another degree of freedom. How to obtain transient responses of the isolation table is described when the movements of the mass are prescribed relative to the table.

Seismic Behavior of Inverted T-type Wall under Earthquake Part I : Verification of the Numerical Modeling Techniques (역T형 옹벽의 지진시 거동특성 Part I : 수치해석 모델링 기법의 검증)

  • Lee, Jin-sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Permanent deformation plays a key role in performance based earthquake resistant design. In order to estimate permanent deformation after earthquake, it is essential to secure reliable response history analysis(RHA) as well as earthquake scenario. This study focuses on permanent deformation of an inverted T-type wall under earthquake. The study is composed of two separate parts. The first one is on the verification of RHA and the second one is on an effect of input earthquake motion. The former is discussed in this paper and the latter in the companion paper. The verification is conducted via geotechnical dynamic centrifuge test in prototype scale. Response of wall stem, ground motions behind the wall obtained from RHA matched pretty well with physical test performed under centrifugal acceleration of 50g. The rigorously verified RHA is used for parametric study to investigate an effect of input earthquake motion selection in the companion paper.

Performance Investigation of a Cylindrical Valve Featuring Electro-Rheological Fluids (전기유동유체를 이용한 실린더형 밸브의 성능 고찰)

  • Kim, K.S.;Jung, D.D.;Lee, H.J.;Choi, S.B.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.148-157
    • /
    • 1994
  • A multi-cylindrical hydraulic valve incorporating with an electro-rheological(ER) fluid is developed in this study. Field-dependent Bingham properties of the ER fluid are exploited to devise the valve system which features fast system response as well as simple mechanism. The fast response is accrued from almost instant response characteristics of the ER fluid itself, and the mechanism configuration is simplified since no nechanically moving parts are required. The material properties of the ER fluids to be utilized for modeling of the proposed valve system are firstly tested with a couette-type electroviscometer. The design and manufacturing processes are then undertaken on the basis of model parameters. The performance characteristics of the valve system are evaluated in terms of pressure variations with respect to the intensity of employed electric fields and flow rates.

  • PDF

Damper Configuration for Seismic Performance Improvement of Heavy Facilities with Frictional Sliding Behavior inside Building (마찰 슬라이딩 거동을 보이는 건물 내 중량 설비의 내진성능 향상을 위한 감쇠기 연결 방안)

  • Ok, Seung-Yong;Park, Kwan-Soon;Lee, Jeeho
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.53-61
    • /
    • 2020
  • This study proposes a new damper configuration for seismic performance improvement of heavy sliding facilities inside a building. For this purpose, we deal with two connection types of control system, and the parametric study has been performed to investigate their comparative seismic performances according to the variations of the control capacity. In order to simulate the seismic responses of the proposed system, we employed a recently-developed seismic response analysis method that can deal with the two-mass system with nonlinear frictional sliding behavior. The numerical results demonstrate that the typical method of diagonal bracing damper connection can exhibit effective control performance both on structure and the heavy sliding facilities, whereas the structure-facilities connection method does not show any control effect on both responses. On the other hand, the typical method has some limitations that it can adversely cause excessive sliding of the facilities, depending upon the frequency characteristics of structure and earthquake. On the contrary, the structure-facilities connection method is very effective in reducing the sliding displacement of the heavy facilities, even with small amount of control capacity. Thus, the following potential expectations can be inferred from these results: The typical diagonal bracing damper connection method will have some promising benefits in controlling the sliding facilities inside the building as well as the building itself, and the structure-facilities connection method can be a cost-effective way of protecting the internal heavy important facilities inside the structure already designed with sufficient seismic performance.

Numerical Simulation of Rehabilitated Flexural RC Member using High Performance Composite (균열제어 기능성 복합재료를 이용한 RC 휨 부재 보강수치해석)

  • 신승교;김태균;임윤묵
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.543-548
    • /
    • 2003
  • In this study, a numerical model is developed using axial deformation link elements that can effectively predict the failure behavior of RC type structures. Using this mod 1, numerical analysis was performed to investigate the strengthening effect and failure behavior of structures repaired with a new material. High-Performance Cementitious Composites, which is characterized by its ductility with 5% strain-capacity is used as a repair material. To investigate the validity of developed numerical model, simulations of direct tension specimen and flexural specimen are performed and the results are compared with published ones. The similar analysis is performed for RC beam. Through this study, it is seen that predicted response has a good agreement with the experimental results. Using this verified numerical model, the strengthening effect of repaired with HPCC structure is analyzed through load-displacement curve and failure modes. Also, the same numerical analysis is performed in RC beam repaired with HPCC. The effect of HPCC ductility is estimated for the overall behavior of structures. Based on the results, the fundamental data are suggested for repaired structures with HPCC.

  • PDF

Experimental Study on the Seismic Behavior Simulation of Modular Expansion Joint (모듈러 신축이음장치 지진거동 모사 실험적 연구)

  • Lee, Jung-Woo;Choi, Eun-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.43-48
    • /
    • 2022
  • In order to evaluate the seismic performance of the modular expansion joint known for its large expansion allowance and remarkable durability, this study conducts seismic response analysis and seismic simulation test. The bridge selected for the seismic response analysis is a cable stayed bridge with main span length of 1,000m. Three artificial earthquake were generated with respect to the design response spectra of the Korean Standards (KS), AASHTO LRFD and Eurocode, and applied to the selected bridge. The seismic simulation tests reproduced the artificial earthquakes using dynamic hydraulic actuators in the longitudinal and transverse directions. The test results verified the durability and safety of the expansion joint in view of its seismic behavior since abnormal behavior or failure of the expansion joint was not observed when the artificial earthquake waves were applied in the longitudinal direction, transverse direction and both directions.

The aerostatic response and stability performance of a wind turbine tower-blade coupled system considering blade shutdown position

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.507-535
    • /
    • 2017
  • In the strong wind shutdown state, the blade position significantly affects the streaming behavior and stability performance of wind turbine towers. By selecting the 3M horizontal axis wind turbine independently developed by Nanjing University of Aeronautics and Astronautics as the research object, the CFD method was adopted to simulate the flow field of the tower-blade system at eight shutdown positions within a single rotation period of blades. The effectiveness of the simulation method was validated by comparing the simulation results with standard curves. In addition, the dynamic property, aerostatic response, buckling stability and ultimate bearing capacity of the wind turbine system at different shutdown positions were calculated by using the finite element method. On this basis, the influence regularity of blade shutdown position on the wind-induced response and stability performance of wind turbine systems was derived, with the most unfavorable working conditions of wind-induced buckling failure of this type of wind turbines concluded. The research results implied that within a rotation period of the wind turbine blade, when the blade completely overlaps the tower (Working condition 1), the aerodynamic performance of the system is the poorest while the aerostatic response is relatively small. Since the influence of the structure's geometrical nonlinearity on the system wind-induced response is small, the maximum displacement only has a discrepancy of 0.04. With the blade rotating clockwise, its wind-induced stability performance presents a variation tendency of first-increase-then-decrease. Under Working condition 3, the critical instability wind speed reaches its maximum value, while the critical instability wind speed under Working condition 6 is the smallest. At the same time, the coupling effect between tower and blade leads to a reverse effect which can significantly improve the ultimate bearing capacity of the system. With the reduction of the area of tower shielded by blades, this reverse effect becomes more obvious.

Dynamic torsional response measurement model using motion capture system

  • Park, Hyo Seon;Kim, Doyoung;Lim, Su Ah;Oh, Byung Kwan
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.679-694
    • /
    • 2017
  • The complexity, enlargement and irregularity of structures and multi-directional dynamic loads acting on the structures can lead to unexpected structural behavior, such as torsion. Continuous torsion of the structure causes unexpected changes in the structure's stress distribution, reduces the performance of the structural members, and shortens the structure's lifespan. Therefore, a method of monitoring the torsional behavior is required to ensure structural safety. Structural torsion typically occurs accompanied by displacement, but no model has yet been developed to measure this type of structural response. This research proposes a model for measuring dynamic torsional response of structure accompanied by displacement and for identifying the torsional modal parameter using vision-based displacement measurement equipment, a motion capture system (MCS). In the present model, dynamic torsional responses including pure rotation and translation displacements are measured and used to calculate the torsional angle and displacements. To apply the proposed model, vibration tests for a shear-type structure were performed. The torsional responses were obtained from measured dynamic displacements. The torsional angle and displacements obtained by the proposed model using MCS were compared with the torsional response measured using laser displacement sensors (LDSs), which have been widely used for displacement measurement. In addition, torsional modal parameters were obtained using the dynamic torsional angle and displacements obtained from the tests.

Grouping effect on the seismic response of cabinet facility considering primary-secondary structure interaction

  • Salman, Kashif;Tran, Thanh-Tuan;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1318-1326
    • /
    • 2020
  • Structural modification in the electrical cabinet is investigated by a proposed procedure that comprises of an experimental, analytical and numerical solution. This research emphasizes the linear dynamic analysis of the cabinet that is studied under the seismic excitation to demonstrate the real behavior of the cabinets in NPP. To this end, an actual electric cabinet is experimentally tested using an impact hammer test which reveals the fundamental parameters of the cabinet. The Frequency-domain decomposition (FDD) method is used to extract the dynamic properties of the cabinet from the experiment which is then used for numerical modeling. To validate the dynamic properties of the cabinet an analytical solution is suggested. The calibrated model is analyzed under the floor response obtained from the Connecticut nuclear power plant structure excited by Tabas 1978 (Mw 7.4) earthquake. Eventually, the grouping effect of the cabinets is proposed which represents the influence on the dynamic modification. This grouping of the cabinets is described more sophisticatedly by the theoretical understating, which results in a significant change in the seismic response. Considering the grouping effects will be helpful in the assessment of the real seismic behavior, design, and performance of cabinets.

Seismic performance of a building base-isolated by TFP susceptible to pound with a surrounding moat wall

  • Movahhed, Ataallah Sadeghi;Zardari, Saeid;Sadoglu, Erol
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.87-100
    • /
    • 2022
  • Limiting the displacement of seismic isolators causes a pounding phenomenon under severe earthquakes. Therefore, the ASCE 7-16 has provided minimum criteria for the design of the isolated building. In this research the seismic response of isolated buildings by Triple Friction Pendulum Isolator (TFPI) under the impact, expected, and unexpected mass eccentricity was evaluated. Also, the effect of different design parameters on the seismic behavior of structural and nonstructural elements was found. For this, a special steel moment frame structure with a surrounding moat wall was designed according to the criteria, by considering different response modification coefficients (RI), and 20% mass eccentricity in one direction. Then, different values of these parameters and the damping of the base isolation were evaluated. The results show that the structural elements have acceptable behavior after impact, but the nonstructural components are placed in a moderate damage range after impact and the used improved methods could not ameliorate the level of damage. The reduction in the RI and the enhancement of the isolator's damping are beneficial up to a certain point for improving the seismic response after impact. The moat wall reduces torque and maximum absolute acceleration (MAA) due to unexpected enhancement of mass eccentricity. However, drifts of some stories increase. Also, the difference between the response of story drift by expected and unexpected mass eccentricity is less. This indicates that the minimum requirement displacement according to ASCE 7-16 criteria lead to acceptable results under the unexpected enhancement of mass eccentricity.