• Title/Summary/Keyword: Behavior-response performance

Search Result 691, Processing Time 0.029 seconds

Mechanics of a variable damping self-centering brace: Seismic performance and failure modes

  • Xie, Xing-Si;Xu, Long-He;Li, Zhong-Xian
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.149-158
    • /
    • 2019
  • The force-deformation behavior, strain distribution and failure modes of a variable damping self-centering brace (VD-SCB) are theoretically analyzed, experimentally studied, and numerically simulated to guide its design. The working principle of the brace is explained by describing the working stages and the key feature points of the hysteretic curve. A large-scale brace specimen was tested under different sinusoidal excitations to analyze the recentering capability and energy dissipation. Results demonstrate that the VD-SCB exhibits a full quasi-flag-shaped hysteretic response, high ultimate bearing capacity, low activation force and residual deformation, and excellent recentering and energy dissipation capabilities. Calculation equations of the strain distribution in different parts of the brace are proposed and are compared with the experimental data and simulated results. The developments of two failure modes are compared. Under normal circumstances, the brace fails due to the yielding of the spring blocking plates, which are easily replaced to restore the normal operating conditions of the brace. A brief description of the design procedure of the brace is proposed for application.

Seismic retrofit of a soft first story structure considering soil effect

  • Michael Adane;Jinkoo Kim
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.345-352
    • /
    • 2023
  • This paper studied the effect of soil-structure interaction (SSI) on the seismic response and retrofit of a reinforced concrete structure with a soft-first story for different soil types. A 5-story structure built on a 30m deep homogeneous soil mass was considered as a case study structure, and steel column jacketing and steel bracing were chosen as seismic retrofit methods. Seismic responses of a fixed-base and a flexible base structure subjected to seven scaled earthquake records were obtained using the software OpenSees to investigate the effect of soil on seismic response and retrofit. The nonlinearBeamColumn elements with the fiber sections were used to simulate the nonlinear behavior of the beams and columns. Soil properties were defined based on shear wave velocity according to categorized site classes defined in ASCE-7. The finite element model of the soil was made using isoparametric four-noded quadrilateral elements and the nonlinear dynamic responses of the combined system of soil and structure were calculated in the OpenSees. The analysis results indicate that the soil-structure interaction plays an important role in the seismic performance and retrofit of a structure with a soft-first story. It was observed that column steel jacketing was effective in the retrofit of the model structure on a fixed base, whereas stronger retrofit measures such as steel bracing were needed when soil-structure interaction was considered.

Analysis of composite frame structures with mixed elements - state of the art

  • Ayoub, Ashraf
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.157-181
    • /
    • 2012
  • The paper presents a review of the application of the newly proposed mixed finite element model for seismic simulation of different types of composite frame structures. To evaluate the performance of the element, a comparison with displacement-based and force-based models is conducted. The study revealed that the mixed model is superior to the others in terms of both speed of convergence and numerical stability, and is therefore considered the most practical approach for modeling of composite structures. In this model, the element is derived using independent force and displacement shape functions. The nonlinear response of the frame element is based on the section discretization into fibers with uniaxial material models. The interfacial behavior is modeled using an inelastic interface element. Numerical examples to clarify the advantages of the model are presented for the following structural applications: anchored reinforcing bar problems, composite steel-concrete girders with deformable shear connectors, beam on elastic foundation elements, R/C girders strengthened with FRP sheets, R/C beam-columns with bond-slip, and prestressed concrete girders. These studies confirmed that the model represents a major advancement over existing elements in simulating the inelastic behavior of composite structures.

Shaking Table Model Test of Shanghai Tower

  • Lu, Xilin;Mao, Yuanjun;Lu, Wensheng;Kang, Liping
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.1
    • /
    • pp.79-83
    • /
    • 2013
  • Shaking table test is an important and useful method to help structural engineers get better knowledge about the seismic performance of the buildings with complex structure, just like Shanghai tower. According to Chinese seismic design guidelines, buildings with a very complex and special structural system, or whose height is far beyond the limitation of interrelated codes, should be firstly studied through the experiment on seismic behavior. To investigate the structural response, the weak storey and crack pattern under earthquakes of different levels, and to help the designers improve the design scheme, the shaking table model tests of a scaled model of Shanghai tower were carried out at the State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China. This paper describes briefly the structural system, the design method and manufacture process of the scaled model, and the test results as well.

Experimental research on seismic behavior of novel composite RCS joints

  • Men, Jinjie;Guo, Zhifeng;Shi, Qingxuan
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.209-221
    • /
    • 2015
  • Results from an experimental study on the seismic response of six composite reinforced concrete column-to-steel beam interior joints are presented. The primary variable investigated is the details in the joint. For the basic specimen, the main subassemblies of the beam and column are both continuous, and the steel beam flanges extended to the joint are partly cut off. Transverse beam, steel band plates, cove plates, X shape reinforcement bars and end plates are used in the other five specimens, respectively. After the joint steel panel yielded, two failure modes were observed during the test: local failure in Specimens 1, 2 and 4, shear failure in Specimens 3, 5 and 6. Specimens 6, 3, 5 and 4 have a better strength and deformation capacity than the other two specimens for the effectiveness of their subassemblies. For Specimens 2 and 4, though the performance of strength degradation and stiffness degradation are not as good as the other four specimens, they all have excellent energy dissipation capacity comparing to the RC joint, or the Steel Reinforced Concrete (SRC) joint. Based on the test result, some suggestions are presented for the design of composite RCS joint.

Behavior of underground strutted retaining structure under seismic condition

  • Chowdhury, Subha Sankar;Deb, Kousik;Sengupta, Aniruddha
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1147-1170
    • /
    • 2015
  • In this paper, the behavior of underground strutted retaining structure under seismic condition in non-liquefiable dry cohesionless soil is analyzed numerically. The numerical model is validated against the published results obtained from a study on embedded cantilever retaining wall under seismic condition. The validated model is used to investigate the difference between the static and seismic response of the structure in terms of four design parameters, e.g., support member or strut force, wall moment, lateral wall deflection and ground surface displacement. It is found that among the different design parameters, the one which is mostly affected by the earthquake force is wall deflection and the least affected is the strut force. To get the best possible results under seismic condition, the embedment depth of the wall and thickness of the wall can be chosen as around 100% and 6% of the depth of final excavation level, respectively. The stiffness of the strut may also be chosen as $5{\times}105kN/m/m$ to achieve best possible performance under seismic condition.

Hysteresis Model for the Cyclic Response of Existing Reinforced Concrete Frames (기존 철근콘크리트 골조의 반복거동 예측을 위한 이력모델)

  • Son, Joo-Ki;Lee, Chang-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.3
    • /
    • pp.81-89
    • /
    • 2020
  • As the damage caused by earthquakes gradually increases, seismic retrofitting for existing public facilities has been implemented in Korea. Several types of structural analysis methods can be used to evaluate the seismic performance of structures. Among them, for nonlinear dynamic analysis, the hysteresis model must be carefully applied because it can significantly affect the behavior. In order to find a hysteresis model that predicts rational behavior, this study compared the experimental results and analysis results of the existing non-seismic reinforced concrete frames. For energy dissipation, the results were close to the experimental values in the order of Pivot, Concrete, Degrading, and Takeda models. The Concrete model underestimated the energy dissipation due to excessive pinching. In contrast, the other ones except the Pivot model showed the opposite results with relatively little pinching. In the load-displacement curves, the experimental and analysis results tended to be more similar when the column axial force was applied to columns.

Structural performance assessment of fixed offshore platform based on in-place analysis

  • Raheem, Shehata E. Abdel;Aal, Elsayed M. Abdel;AbdelShafy, Aly G.A.;Mansour, Mahmoud H.;Omar, Mohamed
    • Coupled systems mechanics
    • /
    • v.9 no.5
    • /
    • pp.433-454
    • /
    • 2020
  • In-place analysis for offshore platforms is essentially required to make proper design for new structures and true assessment for existing structures. The structural integrity of platform components under the maximum and minimum operating loads of environmental conditions is required for risk assessment and inspection plan development. In-place analyses have been executed to check that the structural member with all appurtenances robustness and capability to support the applied loads in either storm condition or operating condition. A nonlinear finite element analysis is adopted for the platform structure above the seabed and the pile-soil interaction to estimate the in-place behavior of a typical fixed offshore platform. The analysis includes interpretation of dynamic design parameters based on the available site-specific data, together with foundation design recommendations for in-place loading conditions. The SACS software is utilized to calculate the natural frequencies of the model and to obtain the response of platform joints according to in-place analysis then the stresses at selected members, as well as their nodal displacements. The directions of environmental loads and water depth variations have important effects on the results of the in-place analysis behavior. The result shows that the in-place analysis is quite crucial for safe design and operation of offshore platform and assessment for existing offshore structures.

Understanding Wet-End Polymer Performance through Visualization of Macromolecular Events by Transmission Electron Microscopy

  • Nanko, Hiroki;Mcneal, Michelyn;Pan, Shaobo
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.1-18
    • /
    • 2006
  • A novel transmission electron microscopy technique for the visualization of polymers adsorbed on secondary fines has been developed. This technique has been utilized in observing the adsorption behavior of various wet-end additives. The technique is sensitive enough not only to allow differentiation between linear and branched polymers, but also to observe differences in the adsorption behavior and conformational characteristics of particular polymeric derivatives. Conformational changes of a cationic polyacrylamide (CPAM) were examined in response to variations in wet-end conditions, such as mixing time and system conductivity. The molecular conformations of cationic starch and cationic guar gum were also examined by this technique. The technique has been employed to observe the effects of silica microparticles on the conformational characteristics of CPAM (drainage/retention aid) pre-adsorbed on secondary fines. The transmission electron microscopy method is a viable tool for investigating the macromolecular events that make up a large part of wet end chemistry in papermaking.

  • PDF

Experimental study on flame behavior within a porous ceramic burner (다공 세라믹 버너 내부의 화염 거동에 관한 실험)

  • Im, In-Gwon;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.518-524
    • /
    • 1997
  • Experimental studies on combustion phenomena within a porous ceramic burner are reported. Main interest of the present work is to investigate fundamental flame behaviors and their effects on the burner operation. Due to high thermal capacity of the porous ceramic materials, the response of flame to burning condition changes is slow and thus to have a stabilized flame is quite difficult and takes much time. It is found that the temperature profile obtained at downstream of the flame zone is not much sensitive to the movement of flame and the speed of flame movement is less than 0.1 mm/sec for the conditions tested. With the premixed LPG/air flame imbedded within the porous ceramic burner, stable combustion regions and unstable combustion regions leading to blowoff or flashback phenomena are observed and mapped on flow velocity versus equivalence ratio diagram. For the development of burner operation technique which is more practical and safe, intermittent burning technique, where the fuel or/and air is supplied to the burner intermittently, is proposed as one of the flame control methods for the porous ceramic burner and tested in this study. Through the experiment, it is realized that the proposed method is acceptable in respect to burner performance and give much flexibility in the operation of porous ceramic burner.